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Confidence interval construction for the difference between two correlated proportions 

with missing observations 

Nian-Sheng Tanga*, Hui-Qiong Lia, Man-Lai Tangb and Jie Lia 

aDepartment of Statistics, Yunnan University, Kunming 650091, P. R. of China 

bDepartment of Mathematics and Statistics, Hang Seng Management College, Hong Kong 

Abstract 

Under the assumption of missing at random, eight confidence intervals (CIs) for the difference 

between two correlated proportions in the presence of incomplete paired binary data are 

constructed on the basis of the likelihood ratio statistic, the score statistic, the Wald-type statistic, 

the hybrid method incorporated with the Wilson score and Agresti-Coull (AC) intervals, and the 

Bootstrap-resampling method. Extensive simulation studies are conducted to evaluate the 

performance of the presented CIs in terms of coverage probability and expected interval width. 

Our empirical results evidence that the Wilson-Score-based hybrid CI and the Wald-type CI 

together with the constrained maximum likelihood estimates perform well for small to moderate 

sample sizes in the sense that (i) their empirical coverage probabilities are quite close to the pre-

specified confidence level, (ii) their expected interval widths are shorter and (iii) their ratios of 

the mesial non-coverage to non-coverage probabilities lie in interval [0.4, 0.6]. An example from 

a neurological study is used to illustrate the proposed methodologies. 
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1 Introduction  

Incomplete matched-pair data are often encountered in paired-comparison studies of two 

treatments or two different conditions of the same treatment. For example, in a neurological 

study of meningitis patients (Choi and Stablein, 1982), 33 young meningitis patients at the St. 

Louis Children’s Hospital were given neurological tests at the time of admission and at the end 

of a standard treatment on neurological complication. In that study, 25 patients received 

neurological tests at the beginning and at the end of the standard treatment, 6 patients received 

neurological tests only at the beginning but not at the end of the standard treatment, and 2 

patients received neurological tests only at the end but not at the beginning of the standard 

treatment. Thus, the resultant data included two parts: the complete and paired observations, and 

the unpaired observations. The data are presented in Table 1 in which 1 and 0 represent the 

absence and presence of neurological complication, respectively. 

In the aforementioned neurological clinical trial, one would like to test the equality of the 

incidence rates of neurological complication before and after the standard treatment. To this end, 

one could construct a 100(1 − α)% confidence interval (CI) for the difference between two 

correlated proportions in the presence of incomplete paired binary data. If the resultant CI 
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entirely lies in the interval (−δ0, δ0) with δ0 (> 0) being some pre-specified clinically acceptable 

threshold, one cannot reject the equality of two proportions at the significance level α. Hence, 

motivated by the aforementioned neurological data, we consider CI construction for the 

difference between two correlated proportions in the presence of incomplete paired binary data. 

The problem of testing the equality and CI construction of the difference between two correlated 

proportions in the presence of incomplete paired binary data has received considerable attention 

in past years. For example, ones can consult Choi and Stablein (1982), Ekbohm (1982), 

Campbell (1984), Bhoj and Snijders (1986), Thomson (1995) for the large sample method, and 

Pradhan, Menon and Das (2013) for the corrected profile likelihood method. When sample size 

is small, Tang and Tang (2004) proposed the exact unconditional test procedure for testing 

equality of two correlated proportions with incomplete correlated data. Tang, Ling and Tian 

(2009) developed the exact unconditional and approximate unconditional CIs for proportion 

difference in the presence of incomplete paired binary data. Lin et al. (2009) presented a 

Bayesian method to test equality of two correlated proportions with incomplete correlated data. 

However, all the aforementioned methods were developed under the assumption of missing 

completely at random (MCAR), i.e., the probability of missing is independent of treatment and 

outcome (Choi and Stablein, 1982). 

Statistical inference on incomplete paired binary data under the assumption of missing at random 

(MAR) has received limited attention (see, Choi and Stablein, 1988; Little and Robin, 2002; 

Chang, 2009). For example, Choi and Stablein (1988) discussed the problem of testing the 

equality of two correlated proportions under the assumption of MAR, and pointed out that those 
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tests that utilize all the data are generally more efficient than those discarding part of the data. 

Chang (2009) proposed an EM algorithm to evaluate the maximum likelihood estimates (MLEs) 

of two correlated proportions under the assumption of MAR and concluded that their proposed 

estimators are more efficient than those conventional estimators in terms of asymptotic relative 

efficiency. However, to our knowledge, little work has been done on CI construction for the 

difference between two correlated proportions under the assumption of MAR. 

Inspired by Shao and Tu (1995), Newcombe (1998b) and Zou and Donner (2008), we develop 

eight CIs for proportion difference in the presence of incomplete paired binary data under the 

assumption of MAR (Chang, 2009; Choi and Stablein, 1988) based on the likelihood ratio test, 

score test, Wald-type test, hybrid method and Bootstrap-resampling method. The derived hybrid 

CI possesses a closed-form expression, which largely reduces the computational burden, and the 

presented Bootstrap-resampling CIs have not been considered in the literature related to missing 

observations. These CIs can be used for analysis of incomplete paired binary data as well as of 

complete paired binary data. 

The rest of this paper is organized as follows. Section 2 first reviews the missing mechanism 

given in Chang (2009). Five different methods are then presented to construct CIs for correlated 

proportion difference under the MAR assumption in Section 2. Simulation studies are conducted 

to evaluate the performance of the proposed CIs in terms of coverage probability, expected 

interval width, and mesial and distal non-coverage probabilities in Section 3. An example from 

the aforementioned neurological study is used to illustrate the proposed methodologies in Section 

4. A brief discussion is given in Section 5. 
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2 Model and confidence interval estimators 

2.1 Model 

Consider a crossover design in which two treatments (e.g., treatment A and treatment B) are 

sequentially performed on the same subject. We may assume that X and Y are outcomes of two 

treatments sequentially applied to the same subject. Denote all the possible values of X and Y by 

0 and 1. We consider the situation where a portion of observations is complete and paired, and 

the remainder is incomplete and unpaired. Let ijn
 be the number of subjects who sequentially 

underwent both treatments (i.e., with both X and Y being observed) with outcome X i=  and 

Y j=  for , 0,1i j = , xn  be the number of subjects who alone underwent treatment A (i.e., with 

only X being observed) and y
n

 be the number of subjects who alone underwent treatment B (i.e., 

with only Y being observed), 0xn  be the number of subjects who alone underwent treatment A 

with outcome X = 0, 0yn
 be the number of subjects who alone underwent treatment B with 

outcome Y = 0, and z be the number of subjects who did not undergo either treatment A or 

treatment B. Thus, 1 0x x xn n n= −  represents the number of subjects who alone underwent 

treatment A with outcome X = 1, and 1 0y y yn n n= −
 represents the number of subjects who alone 

underwent treatment B with outcome Y = 1. Denote 00 01 10 11n n n n n= + + + , 0 00 01n n n+ = + , 

1 10 11n n n+ = + , 0 00 10n n n+ = + , 1 01 11n n n+ = + . Since subjects who did not undergo either treatment 

A or treatment B do not provide any information for estimating response rates, these subjects 

will be excluded from the final data analysis (e.g., Chang, 2009). Hence, similar to Chang 
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(2009), we assume that z = 0, which indicates that x yN n n n= + +
. The data can be summarized 

in Table 2. 

Let EEP  be the probability that a subject sequentially underwent both treatments A and B, EIP  be 

the probability that a subject alone underwent treatment A, IEP  be the probability that a subject 

alone underwent treatment B, and IIP  be the probability that a subject did not undergo either of 

treatments A and B. Similar to Chang (2009), we assume 0IIP = . Let ijp
 be the conditional 

probability of the subject having experimental outcome X = i and ( ), 0,1Y j i j= =
 given a 

subject sequentially underwent both treatments A and B. Hence, we have 1EE EI IEP P P+ + =  and 

00 01 10 11 1p p p p+ + + = . Denote 0 00 01p p p+ = +  and 0 00 10p p p+ = + , which are the response rates 

for X = 0 and Y = 0, respectively. Following Choi and Stablein (1988) and Chang (2009), we 

assume that the missing mechanism is MAR, i.e., the probability of missing is independent of the 

outcome but dependent of the treatment (Little and Robin, 2002). In other words, the assumption 

of MAR is equivalent to that the probability of a missing observation differs for different 

treatments but is constant for the same treatment irrespective of the outcome (Choi and Stablein, 

1988). Mathematically, Ρ (outcome (i.e., X or Y) is missing | outcome, treatment (i.e., A or B)) = 

Ρ (outcome (i.e., X or Y) is missing | treatment (i.e., A or B)). Hence, it follows from the 

multiplication rule of probability that the cell probability corresponding to ijn
 is ij Pπ =

 

(sequentially underwent both treatments and outcome X = i and Y = j) = PEEΡ (outcome X = i, Y 

= j | sequentially underwent both treatments) = PEEpij for i, j = 0, 1. Similarly, the probabilities 
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corresponding to 0xn  and 0yn
 are 0EIP p +  and 0IEP p+ , respectively. Therefore, the observed data 

{ }00 01 10 11 0 1 0 1, , , , , , ,x x y yn n n n n n n n=D
 can be assumed to come from the following multinomial 

distribution: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

00 01 10 11

0 1 0 1

0 100 01 10 0 111

00 01 10 11

0 1 0 1

00 01 10 11 0 1 0 1

P | , , ,

,

x x y y

y y yx x x

n n n n

EE EI EE EE EE EE

n n n n

EI EI IE IE

n n nn n n n n nn n
EE EI IE

N P P c P p P p P p P p

P p P p P p P p

c p p p p p p p p P P P

+ + + +

+ + + +

= ⋅

×

= ⋅

D θθθθ

 (2.1) 

where { }00 01 10 11 0 1 0 1!/ ! ! ! ! ! ! ! !x x y yc N n n n n n n n n=
, 1 0x x xn n n= − , 1 0y y yn n n= −

, 1 01p p+ += − , 

1 01p p+ += −  and ( )00 01 10, ,p p p=θθθθ
. 

2.2 Confidence interval estimators 

In this paper, our main purpose is to construct CI for the correlated proportion difference 

0 0 01 10p p p p+ +∆ = − = − . 

(i) Confidence interval based on the likelihood ratio test 

Let 
ˆ ijp

 be the maximum likelihood estimator (MLE) of ij
p

 for i ,  j  = 0, 1. It follows from Chang 

(2009) that 00p̂ , 01p̂ , 10p̂  and 11p̂  can be obtained via the EM algorithm, which is presented in 

Appendix A. It can be shown from Equation (2.1) that the MLEs of PEE, PEI and PIE  are given 

by 
ˆ /EEP n N= , 

ˆ /EI xP n N=  and 
ˆ /IE yP n N=

, respectively. 
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Let ijpɶ
 be the constrained MLE of ij

p
 under 0 0 0:H p p+ +− = ∆  for i, j = 0, 1. Thus, it follows 

from Equation (2.1) that 00pɶ  and 10pɶ  satisfy the following equations: 

0 100 0 111

00 11 0 0 0 0

0 101 10 0 111

01 10 11 0 0 0 0

0,
1 1

2
0,

1 1

y yx x

y yx x

n nn n nn

p p p p p p

n nn n n nn

p p p p p p p

+ + + +

+ + + +


− + − + − = − −


 + − + − + − =
 − −

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 (2.2) 

where 01 10p p= + ∆ɶ ɶ , 11 00 101 2p p p= − − − ∆ɶ ɶ ɶ , 0 0p p+ += + ∆ɶ ɶ , and 0 00 10p p p+ = +ɶ ɶ ɶ . The likelihood 

ratio statistic (Choi and Stablein, 1982) for testing 0 0 0:H p p+ +− = ∆  is then given by 

( ) ( ){ }00 01 10 11 00 01 10 11ˆ ˆ ˆ ˆ( ) 2 , , , , , , ,lT l p p p p l p p p p∆ = − ɶ ɶ ɶ ɶ
 

which is asymptotically distributed as the chi-squared distribution with one degree of freedom 

under 0 0 0:H p p+ +− = ∆ , where 

( ) ( )00 01 10 11 00 00 01 01 10 10 11 11 0 0 1 0 0 0 1 0, , , log log log log log log 1 log log 1x x y yl p p p p n p n p n p n p n p n p n p n p+ + + += + + + + + − + + −
. Therefore, the approximate 100(1 − α)% likelihood-ratio-test-based CI for ∆ is given by 

[ ],L U∆ ∆
, where 1 1L U− ≤ ∆ ≤ ∆ ≤  are the smaller and larger roots of ∆ to the following equation 

( ) 2
1, ,lT αχ∆ =  

where 
2
1,αχ

 is the upper α-percentile of the central 
2χ  distribution with one degree of freedom. 

There are no closed-form expressions for L∆  and U∆ . Hence, the bisection searching algorithm 

can be used to obtain L∆  and U∆ . 
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(ii) Confidence interval based on the score test 

After some routine computation, the score statistic for testing the null hypothesis 

0 0 0:H p p+ +− = ∆  can be shown to be 

( ) ( )2 101 0 111

01 11 0 1 1 1 2 3

,x x
s

a bn n nn
T

p p p p ab a b+ +

+ + 
∆ = − + −  + + + 

ɶ ɶ ɶɶ

ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ

A A

B A B B  

which is asymptotically distributed as the standard normal distribution under H0, where 

/ij ijN n p=ɶ ɶ
 for i, j = 0, 1, { }0 0/ (1 )xa n p p+ += −ɶ ɶ ɶ

, { }0 0/ (1 )yb n p p+ += −ɶ ɶ ɶ
, 01 10p p= + ∆ɶ ɶ , 

11 00 101 2p p p= − − − ∆ɶ ɶ ɶ , 
2 2

1 1 1 iji j
N

= =
=∑ ∑ɶ ɶA

, 2 00 11 01 10 00 11( )( ) 4N N N N N N= + + +ɶ ɶ ɶ ɶ ɶ ɶ ɶA , 

1 00 01 1 10 11 0N N N N N N+ += +ɶ ɶ ɶ ɶ ɶ ɶ ɶB  with 1 10 11N N N+ = +ɶ ɶ ɶ
 and 0 00 01N N N+ = +ɶ ɶ ɶ

, 2 0 1N N+ +=ɶ ɶ ɶB , 

3 00 10 01 11( )( )N N N N= + +ɶ ɶ ɶ ɶ ɶB , and 4 1= ɶɶB A . Detailed derivation for ( )sT ∆  is presented in 

Appendix B. The approximate 100(1 − α)% confidence limits L∆  and U∆  for ∆  via score test 

statistic can be obtained by solving the following equation: 

/2( ) ,sT zα∆ = ±  

where the plus and minus signs correspond to the lower limit L∆  and the upper limit U∆ , 

respectively, and 1 1L U− ≤ ∆ ≤ ∆ ≤ . These two limits can be obtained by using the secant 

algorithm (Tango, 1998). 

(iii) Confidence interval based on the Wald-type statistic 
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Let 0 0
ˆ ˆ ˆp p+ +∆ = −  be the MLE of ∆ . It follows from Chang (2009) that the asymptotic 

expectation of ̂∆  is given by 
ˆ( )E ∆ ≈ ∆ , and the asymptotic variances of 0p̂ +  and 0p̂+  can be 

estimated by 

� ( ) � ( )3 3
0 1 0 2

0 2 0 1

ˆ ˆ1 1ˆ ˆˆ ˆ ˆ ˆˆ ˆVar , Var ,
ˆ ˆ ˆ ˆEE IE EE EIp P P and p P P

NA NA
+ +

   
= + = +   

   

D D
D D

D D

 (2.3) 

respectively, where 1 0 0
ˆ ˆ ˆ(1 )p p+ += −D , 2 0 0

ˆ ˆ ˆ(1 )p p+ += −D , 3 00 01 1 0 10 11
ˆ ˆ ˆ ˆ ˆ ˆ ˆp p p p p p+ += +D , and 

0 3 1 2
ˆ ˆ ˆ ˆˆ ˆ ˆ / ( )EE EI IEA P P P= + D DD .  Similar to Chang (2009), it is shown that the covariance of 0p̂ +  and 

0p̂+  is given by 0 0 00 11 01 10 0ˆ ˆCov( , ) ( ) / ( )EEp p P p p p p NA+ + = − − , which can be estimated by 

�
0 0 00 11 01 10 0

ˆˆˆ ˆ ˆ ˆ ˆ ˆCov( , ) ( ) / ( )EEp p P p p p p NA+ + = − − . Thus, the asymptotic variance of ∆̂  can be 

expressed as 

� � �
0 0 00 11 01 10

0

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆVar( ) Var( ) Var( ) 2 ( ).

ˆ
EEP

p p p p p p
NA

+ +∆ = + − −
 

An approximate 100(1 )%α−  CI for ∆ on the basis of the Wald-type statistic 

�
1

ˆ ˆ( )/ Var( )wT = ∆ − ∆ ∆
, which is asymptotically distributed as the standard normal distribution, 

is given by 

� �
/2 /2

ˆ ˆ ˆ ˆmax{ 1, Var( )},min{1, Var( )} ,z zα α
 − ∆ − ∆ ∆ + ∆
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which is denoted as Tw1-CI. It has been shown that truncating interval to lie within [−1, 1] makes 

the interval unsatisfactory (Newcombe, 1998a). 

On the other hand, the asymptotic variances of 0p̂ +  and 0p̂+  can be estimated by 

� ( ) � ( )3 3
0 1 0 2

0 2 0 1

1 1ˆ ˆ ˆ ˆˆ ˆvar , var ,EE IE EE EIp P P and p P P
NA NA+ +

   
= + = +   

   

ɶ ɶ
ɶ ɶ

ɶ ɶ ɶ ɶ

D D
D D

D D

 (2.4) 

respectively, where ( )1 0 01p p+ += −ɶ ɶ ɶD
, ( )2 0 01p p+ += −ɶ ɶ ɶD

, 3 00 01 1 0 10 11p p p p p p+ += +ɶ ɶ ɶ ɶ ɶ ɶ ɶD , and 

( )0 3 1 2
ˆ ˆ ˆ /EE EI IEA P P P= +ɶ ɶ ɶ ɶD DD

. Thus, the asymptotic variance of ∆̂  can be estimated by 

� ( ) � ( ) � ( )0 0 00 11 01 10
0

ˆ
ˆ ˆ ˆvar var var 2 ( ).EEP

p p p p p p
NA+ +∆ = + − −ɶ ɶ ɶ ɶ
ɶ

 

An approximate 100(1 − α)% CI for ∆ on the basis of the Wald-type statistic 

�
2

ˆ ˆ( ) ( )/ var( )wT ∆ = ∆ − ∆ ∆
, which is asymptotically distributed as the standard normal distrib 

tion, can be obtained by solving the following equation: 

2 /2( ) ,wT zα∆ = ±
 

where the plus and minus signs correspond to the lower limit L∆  and the upper limit U∆ , 

respectively, and 1 1L U− ≤ ∆ ≤ ∆ ≤ , which is denoted as Tw2-CI. 

(iv) Confidence interval based on the hybrid method 
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Let 0l +  and 0l+  be the lower limits of the approximate 100(1−α)%  two-sided CIs for 0p +  and 

0p+ , respectively. By the Central Limit Theorem, we have 
�

0 0 /2 0ˆ ˆVar( )l p z pα+ + += −
 and 

�
0 0 /2 0ˆ ˆVar( )l p z pα+ + += −

 Thus, we can obtain 

� �2 2 2 2
0 0 0 /2 0 0 0 /2ˆ ˆ ˆ ˆVar ( ) ( ) / ,Var ( ) ( ) / .l lp p l z p p l zα α+ + + + + += − = −

  (2.5) 

Similarly, for the upper limits 0u +  and 0u+  of 0p +  and 0p+ , we have 

� �2 2 2 2
0 0 0 /2 0 0 0 /2ˆ ˆ ˆ ˆVar ( ) ( ) / ,Var ( ) ( ) / .u up u p z p u p zα α+ + + + + += − = −

 (2.6) 

From Equations (2.5) and (2.6), we observe that the variance estimate 
�

0ˆVar ( )l p +  (or 
�

0ˆVar ( )l p+ ) 

is different from 
�

0ˆVar ( )u p +  (or 
�

0ˆVar ( )u p+ ) when the CI 0 0( , )l u+ +  (or 0 0( , )l u+ + ) is asymmetric 

about 0p̂ +  (or 0p̂+ ) (Zou, Huang and Zhang, 2009). 

Since 
( ) ( ) ( ) ( ) ( )0 0 0 0
ˆ ˆ ˆ ˆ ˆVar Var Var 2 Var Varp p p pρ+ + + +∆ = + −

, where ρ is the correlation 

coefficient of 0p̂ +  and 0p̂+ , the approximate ( )100 1 %α−
 confidence lower and upper limits for 

∆ based on the Wald-type statistic are given by 

� ( ) � ( )/2 /2
ˆ ˆ ˆ ˆVar , Var ,L z U zα α= ∆ − ∆ = ∆ + ∆  (2.7) 
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respectively, where 
� ( ) � ( ) � ( ) � ( )� ( )0 0 0 0

ˆ ˆˆ ˆ ˆ ˆVar Var Var 2 Var Varp p p pρ+ + + +∆ = + −
, and ρ̂  is 

consistent estimator of ρ. Substituting (2.5) and (2.6) into (2.7) yields 

( ) ( ) ( )( )2 2

0 0 0 0 0 0 0 0
ˆ ˆˆ ˆ ˆ ˆ2 ,L p l u p p l u pρ+ + + + + + + += ∆ − − + − − − −  (2.8) 

( ) ( ) ( )( )2 2

0 0 0 0 0 0 0 0
ˆ ˆˆ ˆ ˆ ˆ2 ,U u p p l u p p lρ+ + + + + + + += ∆ − − + − − − −  (2.9) 

where 0 0
ˆ ˆ ˆp p+ +∆ = − . By Equations (2.8) and (2.9), it is necessary to compute ρ̂  in evaluating 

confidence limits L and U. Note that ρ has the following expression 

( )
( ) ( )

( )
( ) ( )

0 0 01 10 00 11

0 0 0 0 0

ˆ ˆCov ,
.

ˆ ˆ ˆ ˆVar Var Var Var
EEp p P p p p p

p p NA p p
ρ + +

+ + + +

− +
= =  (2.10) 

Hence, ρ̂  can be evaluated by replacing ij
p

, EEP  and EIP  in Equation (2.10) by their 

corresponding MLEs 
ˆ ijp

 or ijpɶ
, ÊEP  and ÊIP . That is, ρ can be estimated by 

( ){ } ( ){ }
01 10 00 11

1 3 2 2 3 1

ˆ ˆ ˆ ˆ
ˆ .

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ/ /IE EE EI EE

p p p p

P P P P
ρ − +=

+ +D D D D D D

 (2.11) 

Also, to obtain confidence limits L and U of ∆ via Equations (2.8) and (2.9), it is necessary to 

evaluate the confidence limits 0l + , 0l+ , 0u +  and 0u+ . To this end, we consider the following two 

methods. 

(A) The Wilson score confidence interval 
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From Table 2 and model assumptions given in Section 2.1, we have ( )0 0 0,x En n B N P p+ + ++ ∼
 

and ( )0 0 0,y En n B N P p+ + ++ ∼
, where E EE EIP P P+ = +  and E EE IEP P P+ = + . Thus, 0p +  and 0p+  can 

be estimated by ( ) ( )0 0 0 /x xp n n n n+ += + +⌣

 and ( ) ( )0 0 0 /y yp n n n n+ += + +⌣

, respectively. 

According to the Central Limit Theorem and Appendix C, 
( ) ( ) ( )

1 2

0 0 0 0
ˆ / 1ENP p p p p+ + + + +− −⌣

 

is asymptotically distributed as the standard normal distribution, which implies 

( ) ( )
( )

( )( )
( )

1 2 2

0 0 0 0 2
/2 /2

0 00 0

ˆ ˆ
P P 1 .

11

E ENP p p NP p p
z z

p pp p
α α α+ + + + + +

+ ++ +

   − −   ≤ = ≤ = −
   −−    

⌣ ⌣

 

Hence, the lower ( )0
wsl +  and upper ( )0

wsu +  limits of the ( )100 1 α− %
 two-sided Wilson score CI 

for 0p +  are the smaller and larger roots to the following quadratic equation with respect to 

parameter 
( ) ( ) ( ){ }2 2

0 0 0 0 0 /2
ˆ: / 1Ep NP p p p p zα+ + + + + +− − =⌣

, which yields 

2 2
/2 /2 /2 /2

0 0 0 0
0 0

and ,
4 4

ws wsz z z z
l p u p

n n
α α α α

+ + + += − + = + +⌣ ⌣

ɶ ɶ
A A  

where ( )0 0
ˆ 1ENP p p+ + += −⌣ ⌣

A
, ( )2

0 0 0 /2 00.5 /xp n n z nα+ += + +⌣
ɶ

 and 
2

0 /2Ên NP zα+= +ɶ . Similarly, the 

lower ( )0
wsl+  and upper ( )0

wsu+  limits of the ( )100 1 α− %
 two-sided Wilson score CI for 0p+  can 

be expressed as 
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2 2
/2 /2 /2 /2

0 0 0 0
0 1

and ,
4 4

ws wsz z z z
l p u p

n n
α α α α

+ + + += − + = + +⌣ ⌣

ɶ ɶ
B B  

respectively, where ( )0 0
ˆ 1ENP p p+ + += −⌣ ⌣

B
, ( )2

0 0 0 /2 10.5 /yp n n z nα+ += + +⌣
ɶ

 and 
2

1 /2Ên NP zα+= +ɶ . 

(B) The Agresti-Coull interval 

Following Tang, Li and Tang (2010), we consider the Agresti-Coull confidence intervals for 0p +  

and 0p+ . The lower ( )0
acl +  and upper ( )0

acu +  limits of the ( )100 1 α− %
 two-sided Agresti-Coull CI 

for 0p +  are given by 

( ) ( )0 0 /2 0 0 0 0 0 /2 0 0 01 / and 1 / ,ac acl p z p p n u p z p p nα α+ + + + + + + += − − = + −⌣ ⌣ ⌣ ⌣ ⌣ ⌣
ɶ ɶ  

respectively. Similarly, the lower ( )0
acl+  and upper ( )0

acu+  limits of the ( )100 1 α− %
 two-sided 

Agresti-Coull CI for 0p+  are respectively given by 

( ) ( )0 0 /2 0 0 1 0 0 /2 0 0 11 / and 1 / .ac acl p z p p n u p z p p nα α+ + + + + + + += − − = + −⌣ ⌣ ⌣ ⌣ ⌣ ⌣
ɶ ɶ  

(v) Bootstrap-resampling-based confidence intervals 

Given the observed data { }00 01 10 11 0 1 0 1, , , , , , ,x x y yn n n n n n n n=D
, we can obtain the MLEs 00p̂ , 01p̂ , 

10p̂  and 11p̂  of parameters 00p , 01p , 10p  and 11p  via Appendix A, and the naive MLEs ÊEP , ÊIP  

and ÎEP  of parameters EEP , EIP  and IEP  via 
ˆ /EEP n N= , 

ˆ /EI xP n N=  and 
ˆ /IE yP n N=

, 
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respectively. Based on ( )ˆ , 0,1ijp i j =
, ÊEP , ÊIP , and ÎEP , we can generate a Bootstrap data set via 

the distribution: ( )* * * * * * * *
00 01 10 11 0 1 0 1, , , , , , ,x x y yn n n n n n n n

 ~ Multinomial (N; 00
ˆ ˆEEP p , 01

ˆ ˆEEP p , 10
ˆ ˆEEP p , 

11
ˆ ˆEEP p , 0

ˆ ˆEIP p + , 1
ˆ ˆEIP p + , 0

ˆ ˆIEP p+ , 1
ˆ ˆIEP p+ ). For the generated Bootstrap sample 

(
*
00n ,

*
01n ,

*
10n ,

*
11n ,

*
0xn ,

*
1xn ,

*
0yn
,

*
1yn
), we first compute the MLEs 

*
00p̂ , 

*
01p̂ , 

*
10p̂  and 

*
11p̂  of 

parameters 00p , 01p , 10p , and 11p  via Appendix A, and then obtain the estimated value ˆ ∗∆  of ∆  

via 
* * *

0 0
ˆ ˆ ˆp p+ +∆ = − . Independently repeating the above process G times, we obtain G Bootstrap 

estimates 
*ˆ{ : 1,2, , }g g G∆ = …

. Let 
* *
(1) ( )

ˆ ˆ, , G∆ ∆…
 denote the ordered values of 

*ˆ
g∆
’s. Based on 

these 
*ˆ
g∆
’s, we can construct different Bootstrap-resampling-based CIs for ∆ . 

(A) Bootstrap-resampling-based percentile confidence interval 

Following Shao and Tu (1995, p.132), the 100(1 − α)% Bootstrap-resampling-based percentile 

CI for ∆  is 
( )* *

([ /2]) ([ (1 /2)])
ˆ ˆ,G Gα α−∆ ∆

, where [a] represents the integer part of a. 

(B) Bootstrap-resamping-based percentile-t confidence interval 

Let 
1/2ˆ(var( ))S = ∆ , and S* be the value of S calculated from the generated Bootstrap sample. The 

Bootstrap distribution of 
*∆̂  can be defined as 

* * *ˆ ˆ( ) Pr {( ) / }F x S x= ∆ − ∆ ≤ , where Pr* is the 

conditional probability distribution given the original samples. Based on the generated G 

Bootstrap samples, we can obtain 
* *ˆ ˆ( ) / S∆ − ∆  and 

* * *ˆ ˆ{ ( ) / : 1,2, , }g g gt S g G= ∆ − ∆ = …
, where 

*
gS
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is the gth Bootstrap replication of S. Following Efron and Tibshirani (1993), the 100(1 − α)% 

Bootstrap-resampling-based percentile-t CI for ∆ is given by 
( )1- /2 /2

ˆ ˆˆ ˆχ , χS Sα α∆ − ∆ −
, where 

�
1/2ˆ ˆ(Var( ))S = ∆ , /2χα  and 1 /2χ α−  are the 100 / 2α  and 100(1 / 2)α−  percentiles of the empirical 

distribution of 
*
gt , respectively. 

3 Monte Carlo simulation studies 

To investigate the performance of the proposed CI estimators of ∆, we computed their empirical 

coverage probabilities (ECPs), empirical confidence widths (ECWs), and distal and mesial non-

coverage probabilities (DNCPs and MNCPs) via extensive Monte Carlo simulation studies. 

Here, the empirical coverage probability was defined as 

( ) ( )

1

1
ECP = [ { ( ), ( )}],

J
j j

L U
j

I
J =

∆ ∈ ∆ ∆∑ D D
 

where 
( )( )j

L∆ D  and 
( )( )j

U∆ D  were the lower and upper limits of CI for ∆ based on the jth 

observed sample { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
00 01 10 11 0 1 0 1, , , , , , ,j j j j j j j j j

x x y yn n n n n n n n=D
, which was randomly generated 

from the following multinomial distribution Mult(N; PEEp00, PEEp01, PEEp10, PEEp11, PEEp0+, 

PEEp1+, PIEp+0, PIEp+1), and [ { , }]L UI ∆ ∈ ∆ ∆  was an indicator function of the event [ { , }]L U∆ ∈ ∆ ∆  

which was 1 if { , }L U∆ ∈ ∆ ∆ , and 0 otherwise. The empirical confidence width was defined as 

( ) ( )

1

1
ECW = ( ( ) ( )).

J
j j

U L
jJ =

∆ − ∆∑ D D  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

18 

When 0∆ > , the mesial and distal non-coverage probabilities (Newcombe, 1998b) can be 

interpreted as the left and right non-coverage probabilities, respectively, which were defined by 

( ) ( )

1 1

1 1
MNCP { ( )} and DNCP = { ( )},

J J
j j

L U
j j

I I
J J= =

= ∆ < ∆ ∆ > ∆∑ ∑D D  

respectively. When 0∆ < , the mesial and distal non-coverage probabilities can be interpreted as 

the right and left non-coverage probabilities, respectively. The ratio of the MNCP to the non-

coverage probability (NCP) was defined as 

MNCP MNCP
RNCP = .

NCP 1.0 ECP
=

−
 

Following Newcombe (1998b) and Tang, Li and Tang (2010), an interval can be regarded as 

satisfactory if (a) its ECP is close to the pre-specified 95% confidence level, (b) it possesses 

shorter interval width, and (c) its RNCP lies in the interval [0.4, 0.6], as too mesially located if 

its RNCP is less than 0.4, and too distally if its RNCP is greater than 0.6. 

In the first Monte Carlo simulation study, we considered the following parameter settings: (i) N 

= 20, 30, 50, 80, 100, 150; (ii) 0p +  was taken to be 0.3, 0.4, 0.6 and 0.7; (iii) ∆ varied from −0.1 

to 0.1 with step size being 0.05; (iv) ρ was taken to be ρ = −0.1, 0, 0.1, where ρ was the 

correlation coefficient between the paired binary outcomes defined by 

1/2
00 0 0 0 1 0 1( ) ( )p p p p p p pρ + + + + + += − / ; (v) (PEE, PEI, PIE) = (0.8, 0.1, 0.1), (0.7, 0.2, 0.1), (0.7, 0.1, 

0.2), (0.7, 0.15, 0.15), (0.6, 0.2, 0.2); (vi) the confidence level was set to be 1 95%α− = . We 

generated a total of J = 10000 replications for each combination of parameters. In computing 
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Bootstrap-resampling CIs, 5000G =  Bootstrap samples were generated. For each configuration 

of parameters N, 0p + , ∆, ρ , PEE
EEP , PEI, P IE, the observed data 

( )jD  of the jth replication 

( )1, ,10000j = …
 were randomly generated from the multinomial distribution 

Mult ( )00 01 10 11 0 1 0 1; , , , , , , ,EE EE EE EE EI EI IE IEN P p P p P p P p P p P p P p P p+ + + +  in which 0 0p p+ += − ∆ , 

( )1 2

00 0 0 0 1 0 1p p p p p p pρ+ + + + + += +
, ( )1 2

01 0 1 0 1 0 1p p p p p p pρ+ + + + + += −
, 

( )1 2

10 1 0 0 1 0 1p p p p p p pρ+ + + + + += −
, ( )1 2

11 1 1 0 1 0 1p p p p p p pρ+ + + + + += +
, 1 01p p+ += − + ∆  and 

1 01p p+ += − . Based on the generated samples 
( ){ }: 1, ,10000j j = …D

, we calculated the 95% 

coverage probabilities, expected widths and RNCPs for the settings under consideration. Figures 

1-3 presented box plots of ECPs, ECWs and RNCPs of various CIs. Here, each box plot 

contained 4 (i.e., the number of marginal probability0p + ) ×5 (i.e., the number of ∆’s) ×3 (i.e., 

the number of ρ’s) ×5 (i.e., the number of (EEP , EIP , IEP )’s) = 300 data points. 

To study the performance of our proposed CI estimators for ∆ under the moderate/large 

correlation coefficients, we conducted the second simulation study under the following parameter 

settings: (i) N = 20, 30, 50, 80, 100, 150; (ii)0 0.5;p + =  (iii) 0.05, 0, 0.05;∆ = −  (iv) ρ = −0.9, -

0.6, -0.5, -0.1, 0, 0.1, 0.5, 0.6, 0.9. Here, we did not consider other values of 0p +  because some 

values of 00p , 01p , 10p  and 11p  may be negative under0 0.5p + ≠ . Results were presented in 

Table 3. 
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According to Figures 1–3 and Table 3, we obtained the following observations. For small sample 

sizes (e.g., see Figure 1), we found that the CIs based on the score statistic (i.e., Ts), the Wald-

type statistic (i.e., 1wT ) and the hybrid method with the Wilson score method (i.e., MW) produced 

deflated coverage probabilities (e.g., their median ECPs were less than 93%). Two bootstrap CIs 

(i.e., B1 and B2) and the Wald-type CI (i.e.,2wT ) behaved satisfactorily in the sense that their 

median ECPs were close to the pre-specified confidence level 95%. The CIs based on the 

likelihood ratio method (i.e.,lT ) and the hybrid method with the Agresti-Coull interval (i.e., M A) 

always guaranteed their median ECPs at or above the pre-specified confidence level. As sample 

size increased, median ECPs of all CIs except for lT , sT  and 1wT  became closer to the pre-

specified confidence level. From Figure 2, we observed that median RNCPs of all CIs except for 

lT  and sT  generally lied in the interval [0.4, 0.6]. This showed that our derived CIs generally 

exhibited appropriate symmetry. From Figure 3, we observed that the CIs based on lT  and sT  

generally yielded shorter median ECWs than other CIs. However, this may be due to their 

deflation in ECPs. Generally, the larger the sample size the narrower the confidence width. Also, 

the interval width increased as the proportion of missing observations increased. From Table 3, 

we found that (i) all mean interval widths decreased as the correlation (i.e., ρ) increased, (ii) there 

was no significant effect of ρ on mean ECPs for CIs of ∆ derived from 2wT , MW, MA, B1 and B2 

methods, (iii) whilst there was a large effect of ρ on mean ECPs for CIs of ∆ derived from lT , sT  

and 1wT  methods. For moderate values of 0p + , the mean coverage probabilities were closer to the 

pre-specified confidence level and the interval widths were generally wider. Finally, we did not 
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observe significant effect of ∆ on mean coverage probabilities and interval widths. In view of the 

above findings, we would recommend the hybrid CI with the wilson score interval (MW) and 

2wT -CI as they (i) generally well controlled their coverage probabilities around the pre-chosen 

confidence level; (ii) consistently yielded shorter interval widths (even for small sample 

designs); and (iii) usually guaranteed their ratios of the MNCPs to the non-coverage probabilities 

lying in [0.4, 0.6]. Particularly, if one would like a CI that yields the shortest interval width, the 

hybrid CI with the Agresti-Coull interval is the optimal choice. If one would like a CI that yields 

less discrepancy in the ratio of the MNCP to the non-coverage probability, the 2wT -CI is the 

desirable candidate. 

4 An illustrative example 

In this section, the neurological study of meningitis patients introduced in Section 1 is used to 

illustrate the proposed methodologies. In this example, we are interested in CI construction of the 

difference between the incidence rates of neurological complication before and after the standard 

treatment. Under the previously given notation, we have 00 8n = , 01 8n = , 10 3n = , 11 6n = ,  

0 2xn = , 0 2yn =
, 6xn = , 

2yn =
 and N = 33. We calculated MLEs of the incidence rates of 

neurological complication before and after the standard treatment via the aforementioned EM 

algorithm, which were given by 0ˆ 0.6504p + =  and 0ˆ 0.4821p+ = , respectively. Thus, an estimate 

of ∆ was given by 0.1683. Various 95% CIs for 0 0p p+ +∆ = −  were presented in Table 4. 

According to Table 4, we observed that the incidence rates of neurological complication before 

and after the standard treatment were the same since all CIs except for the score-based CI include 
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0. Since the CIs based on MA and 2wT  methods are the most reliable according to our simulation 

studies, we have reason to believe that there is no significant difference between the incidence 

rates of neurological complication before and after the standard treatment at the 5% significance 

level. 

5 Conclusion 

In this paper, we considered the problem of CI construction for the difference between two 

correlated proportions in paired-comparison studies with missing observations. Under the 

assumption of MAR, we derived the score test statistic and proposed eight CI estimators for the 

difference between two correlated proportions in the presence of incomplete paired binary data 

based on the likelihood ratio method, the score test method, the Wald-type test method, the 

hybrid method with the Wilson score and Agresti-Coull intervals, and the Bootstrap-resampling 

method. Extensive simulation studies were conducted to evaluate the performance of the 

proposed CIs with respect to their empirical coverage probabilities (ECPs), empirical interval 

widths (ECWs) and ratios of the mesial non-coverage probabilities to the non-coverage 

probabilities (RNCPs). Based on our simulation results, we found that the hybrid CI with the 

wilson score interval (i.e., MW) and the Wlad-type CI with the constrained MLE behave 

satisfactorily for small to moderate sample sizes in the sense that their coverage probabilities 

could be well controlled around the pre-specified nominal confidence level and their RNCPs 

could be well controlled in the interval [0.4, 0.6]. Hence, they were recommended for practical 

applications when the coverage probability is of interest. Unlike the asymptotic score and 

likelihood ratio CIs, the proposed hybrid CIs possess analytical expressions and are thus 
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recommended due to their computational simplicity. In particular, the hybrid CI with the Agresti-

Coull interval is highly recommended in practice. We considered an analogue of the continuity 

correction of Newcombe (1998c) for the hybrid interval and omitted the corresponding results 

since the improvement is not significant. 

In this paper, it is assumed that the missing mechanism is MAR. When the missing mechanism 

causing the incompleteness of the data depends on the treatment and the outcome, CI 

construction for the difference between two correlated proportions is not trivial and is under 

investigation. 
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Appendix A: Maximum likelihood estimators of ijp
’s 

Let 
ˆ ijp

 be the maximum likelihood estimator (MLE) of ij
p

 for i, j = 0, 1. It follows from 

Campbell (1984) and Chang (2009) that MLEs of 00p , 01p , 10p  and 11p  satisfy the following 

equations: 

( ) ( ){ }00 00 0 00 00 01 0 00 00 10ˆ ˆ ˆ ˆ ˆ ˆ ˆ/ / / ,x yp n n p p p n p p p N= + + + +
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( ) ( ){ }01 01 0 01 00 01 1 01 01 11ˆ ˆ ˆ ˆ ˆ ˆ ˆ/ / / ,x yp n n p p p n p p p N= + + + +
 

( ) ( ){ }10 10 0 10 00 10 1 10 10 11ˆ ˆ ˆ ˆ ˆ ˆ ˆ/ / / ,y xp n n p p p n p p p N= + + + +
 

( ) ( ){ }11 11 1 11 01 11 1 11 10 11ˆ ˆ ˆ ˆ ˆ ˆ ˆ/ / / .y xp n n p p p n p p p N= + + + +
 

Thus, an EM algorithm for computing MLEs of ij
p

’s can refer to Campbell (1984, p.314) and 

Chang (2009, p.794). 

Appendix B: Derivation of the score test statistic 

Let 0 0p pβ + += − − ∆ . The log-likelihood function of the observed data D can be rewritten as 

( ) ( )
( ) ( )
( ) ( )
( )

00 10 00 00 01 10 10 10

11 00 10 0 00 10

1 00 10 0 00 10

1 00 10

, , log log log

log 1 2 log

log 1 log

log 1 ,

x

x y

y

l p p n p n p n p

n p p n p p

n p p n p p

n p p c

β β
β β

β

= + + + ∆ +

+ − − − − ∆ + + + + ∆

+ − − − − ∆ + +

+ − − +
 (A.1) 

where c is the constant which is independent of parameters 00p , 10p  and β . 

According to Equation (A.1), the score function with respect to β  and the Fisher information 

matrix with respect to β , 00p  and 10p  under 0β =  are given by 

01 0 111
0

10 00 10 00 10 00 10

| ,
1 2 1

x xn n nnl

p p p p p p pββ =
∂ = − + −
∂ + ∆ − − − ∆ + + ∆ − − − ∆

 

and 
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01 11 11 01 11

11 00 11 11

01 11 11 01 10 11

2

2 ,

2 2 4

N N a N a N N a

N a N N a b N a b

N N a N a b N N N a b

+ + + + + 
 = + + + + + + 
 + + + + + + + + 

I  (A.2) 

respectively, where 
/ij ijN n p=

 for i, j = 0,1, ( ){ }0 0/ 1xa n p p+ += −
, ( ){ }0 0/ 1yb n p p+ += −

, 

01 10p p= + ∆ , and 11 00 101 2p p p= − − − ∆ . It follows from Equation (A.2) that the upper left 

element I11 of I−1 can be expressed as 

( )2 111

1 1 2 3

,
a b

I
ab a b

+ +
=

+ + +
A A

B A B B
 

where 1 00 10 01 11N N N N= + + +A , ( )( )2 00 11 01 10 00 114N N N N N N= + + + +A
, 

1 00 01 10 00 01 11 00 10 11 01 10 11N N N N N N N N N N N N= + + +B , ( )( )2 00 01 10 11N N N N= + +B
, 

( )( )3 00 10 01 11N N N N= + +B
, and 4 1=B A . Hence, the score statistic for testing 

0 0 0:H p p+ +− = ∆  is given by 

( ) ( )
( )

00 00 10 10 01 01 11 11

00 00 10 10 01 10 11 11

11
0 , , ,

2 101 0 111
, , ,

01 11 0 1 1 1 2 3

/ | |

| .

s p p p p p p p p

x x
p p p p p p p p

T l I

a bn n nn

p p p p ab a b

ββ = = = = +∆ =

= = = +∆ =
+ +

∆ = ∂ ∂

+ + 
= − + −  + + + 

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

A A

B A B B

 

Appendix C: Expectations and variances of 1p +
⌣

 and 1p+
⌣

 

It can be shown from properties of multinomial distribution that ( )1 1 1| ~ ,x x xn n n n B n n p+ ++ + +
,  

( )1 1 1| ~ ,y y yn n n n B n n p+ ++ + +
, ( )| ~ ,x En n N B N P ++

 and ( )| ~ ,y En n N B N P++
. By the 
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delta method, we have 
{ }1 1

Ê EE P P− −
+ +≈

 and 
{ }1 1ˆ

E EE P P− −
+ +≈

. Then, according to the properties of 

expectation and variance and the above given expressions, we have 

{ } { }

{ } { } { }
{ } ( )

( )

( )

1

1 1
1 1 1

1 1

1 1
1

1 1

1 1

,

var var var

1
var

1
1

1 1
ˆ

x x

x x

x x

x

x

x
n n x n n x

x

n n x n n x

n n n n
x

n n
x

n n

E

n n
E p E E p n n E E n n p

n n

p E p n n E p n n

p p
p E

n n

p p E
n n

p p
E

N P

+

+
+ + + + +

+ + + +

+ +
+ + +

+ + +

+ +
+

+

  + =  +  = + =    +   

=  +  +  +    

− 
= +  + 

 
= −  + 

− = 


⌣ ⌣

⌣ ⌣ ⌣

( )1 11
.

E

p p

NP
+ +

+




 

−
≈

 

Similarly, we can show that { }1 1E p p+ +=⌣

 and { } ( ) ( )1 1 1var 1 / Ep p p NP+ + + +≈ −⌣

. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

27 

 

References 

Bhoj, D. S., Snijders, T. A. B. (1986). Testing equality of correlated proportions with incomplete 

data on both response. Psychometrika 51:579–588. 

Campbell, G. (1984). Testing equality of proportions with incomplete correlated data. Journal of 

Statistical Planning and Inference 10:311–321. 

Chang, M. (2009). Estimation of multiple response rates in phase II clinical trials with missing 

observations. Journal of Biopharmaceutical Statistics 19:791–802. 

Choi, S. C., Stablein, D. M. (1982). Practical tests for comparing two proportions with 

incomplete data. Applied Statistics 31:256–262. 

Choi, S. C., Stablein, D. M. (1988). Comparing incomplete paired binomial data under non-

random mechanisms. Statistics in Medicine 7:929–939. 

Ekbohm, G. (1982). On testing the equality of proportions in the paired case with incomplete 

data. Psychometrika 47:115–118. 

Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton: Chapman & 

Hall. 

Lin, Y., Lipsitz, S., Sinha, D., Gawande, A. A., Regenbogen, S. E., Greenberg, C. C. (2009). 

Using Bayesian p-values in a 2 2×  table of matched pairs with incompletely classified data. 

Journal of the Royal Statistics Society Series C 58:237–246. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

28 

Newcombe, R. G. (1998a). Two-sided confidence intervals for the single proportion: 

comparison of seven method. Statistics in Medicine 17:857–872. 

Newcombe, R. G. (1998b). Interval estimation for the difference between independent 

proportions: comparison of eleven methods. Statistics in Medicine 17:873–890. 

Newcombe, R. G. (1998c). Improved confidence intervals for the difference between binomial 

proportions based on paired data. Statistics in Medicine 17:2635–2650. 

Pradhan, V.,  Menon, S., Das, U. (2013). Correlated profile likelihood confidence interval for 

binomial paired incomplete data. Pharmaceutical Statistics 12:48–58. 

Shao, J., Tu, D. S. (1995). The Jackknife and Bootstrap. New York: Springer-Verlag. 

Tang, M. L., Tang, N. S. (2004). Exact tests for comparing two paired proportions with 

incomplete data. Biometrical Journal 46:72–82. 

Tang, M. L., Ling, M. H., Tian, G. (2009). Exact and approximate unconditional confidence 

intervals for proportion difference in the presence of incomplete data. Statistics in Medicine 

28:625–641. 

Tang, M. L., Li, H. Q., Tang, N. S. (2010). Confidence interval construction for proportion ratio 

in paired studies based on hybrid method. Statistical Methods in Medical Research 21:361–378. 

Tango, T. (1998). Equivalence test and confidence interval for the difference in proportions for 

the paired-sample design. Statistics in Medicine 17:891–908. 

Thomson, P. C. (1995). A hybrid paired and unpaired analysis for the comparison of proportions. 

Statistics in Medicine 14:1463–1470. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

29 

Zou, G. Y. (2008), Donner, A. (2008). Construction of confidence limits about effect measures: a 

general approach. Statistics in Medicine 27:1693–1702. 

Zou, G. Y., Huang, W. Y., Zhang, X. H. (2009). A note on confidence interval estimation for a 

linear function of binomial proportions. Computational Statistics and Data Analysis 53:1080–

1085. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

30 

Table 1. Neurological complication data from Choi and Stablein (1982). 

 

 0Y =  1Y =  Missing Y Total 

0X =  8 8 4 20 

1X =  3 6 2 11 

Missing X 2 0 – 2 

Total 13 14 6 33 

X = beginning of treatment; Y = end of treatment. 
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Table 2 Observed frequencies for a matched-pair design with missing observations 

 

 0Y =  1Y =  Missing Y Total 

0X =  00n  01n  0xn  0 0xn n+ +
 

1X =  10n  11n  0x xn n−  1 0x xn n n+ + −  

Missing X 
0yn
 0y yn n−

 
0z =  yn

 

Total 
0 0yn n+ +

 1 0y yn n n+ + −
 

nx x yN n n n= + +
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Table 3 Mean ECPs and ECWs of various confidence intervals with different ρ. 

 

 ρ Tl Ts 1wT  2wT
 

MW M A  B1 B2 

ECP −0.9 0.9684 0.9668 0.9613 0.9532 0.9547 0.9617 0.9635 0.9434 

 −0.6 0.9693 0.9686 0.9581 0.9502 0.9556 0.9562 0.9607 0.9415 

 −0.5 0.9690 0.9695 0.9588 0.9509 0.9552 0.9557 0.9612 0.9423 

 −0.1 0.9671 0.9680 0.9565 0.9480 0.9524 0.9528 0.9578 0.9417 

 0 0.9663 0.9677 0.9558 0.9474 0.9516 0.9518 0.9574 0.9414 

 0.1 0.9667 0.9678 0.9569 0.9487 0.9527 0.9532 0.9569 0.9417 

 0.5 0.9422 0.9468 0.9646 0.9559 0.9569 0.9573 0.9616 0.9509 

 0.6 0.9115 0.9221 0.9675 0.9595 0.9563 0.9569 0.9628 0.9551 

 0.9 0.9035 0.9106 0.9955 0.9504 0.9517 0.9521 0.9657 0.9601 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

33 

ECW −0.9 0.3724 0.3702 0.5187 0.5128 0.5100 0.5108 0.4883 0.4893 

 −0.6 0.3562 0.3542 0.4848 0.4793 0.4659 0.4665 0.4579 0.4589 

 −0.5 0.3494 0.3482 0.4727 0.4672 0.4516 0.4525 0.4470 0.4477 

 −0.1 0.3179 0.3181 0.4175 0.4118 0.3938 0.3942 0.3963 0.3970 

 0 0.3082 0.3091 0.4015 0.3957 0.3782 0.3787 0.3813 0.3818 

 0.1 0.2972 0.2993 0.3846 0.3785 0.3620 0.3625 0.3653 0.3659 

 0.5 0.2391 0.2466 0.3037 0.2954 0.2863 0.2867 0.2874 0.2874 

 0.6 0.2195 0.2295 0.2791 0.2695 0.2623 0.2628 0.2628 0.2623 

 0.9 0.1366 0.1568 0.1887 0.1633 0.1638 0.1641 0.1620 0.1599 
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Table 4 Various 95% CIs for 1 1p p+ +−  based on the neurological data set. 

 

 Tl Ts 1wT
 2wT

 
MW M A  B1 B2 

Lower −0.0740 0.0301 −0.0653 −0.0779 −0.0908 −0.0905 −0.0761 −0.0856 

Upper 0.3966 0.3927 0.4019 0.3946 0.3522 0.3518 0.3972 0.4275 

Width 0.4706 0.3626 0.4672 0.4725 0.4430 0.4423 0.4733 0.5131 
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Figure 1: ECPs of various confidence interval estimates for different total sample size (N) 
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Figure 2: RNCPs of various confidence interval estimates for different total sample size (N) 

 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 1
9:

23
 2

0 
O

ct
ob

er
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

37 

Figure 3: ECWs of various confidence interval estimates for different total sample size (N) 
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