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Abstract
Estimation of covariate-dependent conditional covari-
ance matrix in a high-dimensional space poses a chal-
lenge to contemporary statistical research. The existing
kernel estimators may not be locally adaptive due to
using a single bandwidth to explore the smoothness of
all entries of the target matrix function. In this paper,
we propose a novel framework to address this issue,
where we factorize the target matrix into factors and esti-
mate these factors in turn by the kernel approach. The
resulting estimator is further regularized by threshold-
ing and optimal shrinkage. Under certain mixing and
sparsity conditions, we show that the proposed estima-
tor is well-conditioned and uniformly consistent with
the underlying matrix function even when the sam-
ple is dependent. Simulation studies suggest that the
proposed estimator significantly outperforms its com-
petitors in terms of integrated root-squared estimation
error. We present an application to financial return
data.
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1 INTRODUCTION

Nonparametric estimation of covariate-dependent conditional covariance matrix Σ(u) in covari-
ance models is fundamental to contemporary scientific research including neuroimaging in
neuroscience, disease mapping in health science, daily ozone concentration analysis in environ-
mental science and asset portfolio risk analysis in finance, among others (Chen & Leng, 2016; Fan
et al., 2013; Fox & Dunson, 2015; Lamusa et al., 2012; Ledoit & Wolf, 2004; Reich et al., 2011; Yin
et al., 2010; Zhang & Liu, 2015; Zhang & Su, 2015; Donoho et al., 2018). However, most efforts in
nonparametric covariance estimation suffer from a curse of dimensionality (Fan & Yao, 2003). For
example, in asset portfolio risk analysis, modeling market-dependent co-volatility of p assets by
use of historical return data over n consecutive months involves estimating p(p+ 1)/2 nonpara-
metric curves (Fama & French, 2004). The dataset we are studying in this paper contains historical
returns of 75 assets over three time periods, namely before-financial-crisis, in-financial-crisis and
after-financial-crisis with n equal to 84, 36, and 95 months, respectively. Note that many more
assets can be collected for investigation whereas the number of months in a period is some-
times quite limited (Engle et al., 2017). When p is close to or larger than n, the kernel covariance
estimator proposed by Yin et al. (2010) can be degenerate or ill-conditioned with a high con-
dition number. Hence, it cannot be reliably inverted to compute the precision matrix which is
required in the above risk analysis. In the literature, regularization of estimated covariances was
often done by banding, thresholding, or truncating the number of the leading eigenvalues (Bickel
& Levina, 2008; Cai & Liu, 2012; Fan et al., 2013). Chen and Leng (2016) proposed a method
(called DCM) to regularize the kernel covariance model by thresholding covariance entries. These
authors pointed out that the resulting covariance estimator can still be ill-conditioned for finite
samples, where an ad hoc and small constant is required to add to its eigenvalues. These authors
also established a consistency theory for their estimator when the sample is i.i.d. There are three
main issues that arise when we use these existing methods. First, the performance of these meth-
ods can be compromised by employing the same smoothing bandwidth for all entries which have
varying degrees of smoothness. In particular, under the sparse assumption, the covariance matrix
function contains many zero entries which are in favor with an infinite large bandwidth and thus
affect estimation of other nonzero entries if we use a single bandwidth for all entries. On the other
hand, letting all the entries have their own bandwidths will generate p(p+ 1)/2 tuning constants
to choose. The resulting estimator may not be an appropriate covariance matrix estimator as it can
be negative definite for finite samples. Secondly, as the ad hoc eigenvalues adjustment of Chen and
Leng (2016) to the estimated matrix is not principle guided, it is desirable to explore an optimal
shrinkage procedure. Finally, the existing asymptotic theory holds only for i.i.d. samples although,
in most applications, the samples are dependent. For instance, in the above asset portfolio risk
analysis, both market returns and asset returns are serially correlated time series.

In this paper, we propose a novel framework to address these issues. It is based on a
variance–correlation factorization of Σ(u) in the form of Σ(u) = Q0(u)C0(u)Q0(u)T , where Q0(u) is
a diagonal matrix function composed by the square roots of the diagonal entries of Σ(u) and C0(u)
is the correlation matrix function. We further factorize C0(u) into the product of invertible band
matrix factors of Σ(u). In general, we choose band matrices which are less complex than Σ(u). In
the proposal, we first estimate these band matrices in turn with separate kernel bandwidths, fol-
lowed by entry-wise thresholding on the resulting estimator of C0(u). Estimation of these band
matrices with different bandwidths is expected to improve the flexibility of the proposal and thus
to provide a more accurate estimator for Σ(u). Intuitively, performing thresholding on estimated
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correlations is better than on covariances, since the variation of the estimated correlations is likely
to be smaller and more homogenous than that of the estimated covariances. In fact, thresholding
correlations has been proved adaptive to the variability of individual entries of covariance matrix
(Cai & Liu, 2012). Finally, a well-conditioned and optimal shrinkage estimator of Σ(u) is derived
by the principle of minimizing the Frobenius loss. In summary, the proposed framework differs
from the DCM in using multiple factorization-based bandwidths, thresholding correlations and
taking into account a shrinkage effect. The proposal can be viewed as a nonparametric extension
of the so-called DCC-GARCH approach (Engle et al., 2017), a popular technique for estimating a
multivariate time series model.

To evaluate the performance of the new proposal, a set of simulation studies are conducted.
The results demonstrate that the new proposal substantially outperforms its counterparts in terms
of the Frobenius loss and other criteria. The proposed method is illustrated through an appli-
cation to the analysis of monthly return data for a group of risky assets mentioned above. The
analysis reports the following findings: (1) Some asset returns present a striking nonlinear depar-
ture from the Capital Asset Pricing Model (CAPM) (Fama & French, 2004). (2) Both volatility
and co-volatility of these asset returns are market-dependent, see Figure 1 for more details. These
two findings provide an empirical support for building a nonparametric CAPM for risk assess-
ment and portfolio selection. We also establish an asymptotic theory for the new proposal: under
some mixing and regularity conditions, the proposed estimator is asymptotically consistent with
the underlying covariance matrix function even when the samples are dependent. In the proce-
dure, the thresholding step ensures that the resulting estimator converges to the true covariance
matrix with a good rate while the shrinkage step makes the resulting estimator not ill-conditioned
even in finite samples. To prove the above theory, a dedicated concentration inequality (Mer-
levede et al., 2009) different from Chen and Leng (2016) is employed for dependent samples. In
particular, the proof for the convergence rate of the proposed shrinkage is nontrivial. Note that
without the extra thresholding step, a standard shrinkage estimator is expected to have conver-
gence rate of

√
p∕(nh), where h is the bandwidth in the kernel estimation (Ledoit & Wolf, 2004).

After adding the extra thresholding step in the shrinkage procedure, we show that the resulting
estimator has a faster convergence rate

√
log(p∕h)∕(nh) than does the standard shrinkage if the

underlying covariance matrix is sparse.
The rest of the article is organized as follows. The proposed factorized estimators are intro-

duced in Section 2. The corresponding algorithms are developed to determine the bandwidths in
the related kernel smoothing as well as the levels of thresholding and shrinkage. The uniform
consistency and the convergence rate of the proposed estimator are established with dependent
samples in Section 3. In Section 4, simulation studies are conducted to evaluate the perfor-
mance of the proposed method and compare it to the existing method. The proposed procedure
is employed to analyze financial returns for a group of assets. We conclude with a discussion in
Section 5. The proofs of asymptotic theory and further numerical results are delayed to Data S1.
Throughout this paper, we let 𝜆min(⋅) and 𝜆max(⋅) denote the minimum and maximum eigenval-
ues of a square matrix. For a vector x, let ||x|| denote its Euclidean norm. For a square matrix
A= (aik)p×p, let ||A||F =

√
tr(AAT)∕p, ||A|| = 𝜆

1∕2
max(AAT), ||A||max = max1≤i,k≤p|aik| and ||A||∞ =

max1≤i≤p
∑n

k=1 |aik| denote its (size-normalized) Frobenius, spectral, max and ∞-norms. Let⟨A, B⟩= tr(ABT)/p be the inner product of square matrices A and B. Let I(⋅) denote an indicator
function. Note that these norms satisfy ||A||F ≤ ||A|| ≤ ||A||∞ ≤ max1≤i≤p

∑p
j=1 I(|aik| > 0)||A||max.

Let diag(x) denote the diagonal matrix with diagonal entries made from the elements of x. Let
c∧ d and c∨ d denote the minimum and maximum of numbers c and d. Let Ip be a p-dimensional
identity matrix.
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F I G U R E 1 Pattern changes in the three periods. Before-financial-crisis: (a) Plots of estimated means �̂�k(ui)
against i (top), estimated individual volatility �̂�kk(ui) against i (middle) and ui against i (bottom). (b) Plots of
estimated �̂�k(u) against u (left) and estimated individual volatility �̂�kk(u) against u right. Similarly, (c) and (d) for
the in-financial-crisis period while (e) and (f) for the after-financial-crisis [Color figure can be viewed at
wileyonlinelibrary.com]

2 METHODOLOGY

Let Y = (Y1, … ,Yp)T ∈ Rp be a p-dimensional random vector and U ∈ R be the associated index
random variable. We model the conditional mean and covariance matrix of Y given U =u as
𝝁(u) = E[Y |U = u] and Σ(u) = cov(Y |U = u), respectively, whose entries are assumed to be the
unknown but smooth functions of u. Suppose that (yi,ui)n

i=1 with yi = (yi1, … , yip)T , are random
observations from the population (Y , U), satisfying the equations

yi = 𝝁(ui) + Σ1∕2(ui)𝜀i, i = 1, … ,n,

http://wileyonlinelibrary.com
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where 𝝁(ui) = (𝜇1(ui), … , 𝜇p(ui))T and (ui)n
i=1 is a dependent random sample of U. Also, given

(ui)n
i=1, 𝜀i’s are dependent on each other and with zero means and unity covariance matrices (i.e.,

E[𝜀i|ui]= 0p, cov(𝜀i|ui)= Ip and E[𝜀i𝜀
T
j ] ≠ 0, i ≠ j).

Let K(u) be a kernel density function, Kh(u)= h−1K(u/h) (the scaled kernel function with
a bandwidth h> 0) and wih(u) = Kh(ui − u)∕

∑n
k=1 Kh(uk − u) (the weighting function). Yin

et al. (2010) considered the following kernel estimators for 𝝁(⋅) and Σ(⋅):

�̂�(u) =
n∑

i=1
wiha(u)yi,

Σ̂(u) =
n∑

i=1
wih(u)(yi − �̂�(ui))(yi − �̂�(ui))T=̂(�̂�kj(u))1≤k,j≤p, (1)

where ha and h are bandwidths for mean and covariance matrix functions, respectively.

2.1 The variance–correlation-based approach

To improve the above covariance estimator, we consider a variance-correlation factorization in
the form

Σ(u) = Q0(u)C0(u)Q0(u), (2)

where Q0(u) = diag(Σ(u))1∕2 and C0(u) = Q0(u)−1Σ(u)Q0(u)−1. The proposed variance–correlation
based Q0-procedure can be implemented in the following three steps.

Step 1: Estimate Q0(u) and C0(u). We first estimate the diagonal entries, Q̂0(u) = diag(�̂�kk(u) ∶
1 ≤ k ≤ p) with a Q0(u)-specified bandwidth h= h0. Then, we standardize yi, 1≤ i≤n by using
�̂�(ui) and Q̂0(ui):

ỹi = Q̂−1
0 (ui)(yi − �̂�(ui)), 1 ≤ i ≤ n,

and estimate C0(u) by

Ĉ0(u) =
n∑

i=1
wih0(u)ỹiỹT

i , (3)

with bandwidth h0.
Step 2: Threshold Ĉ0(u). Note that the dimension p is frequently larger than the local sample

size nh. This results in a degenerate estimator Ĉ0(u). Following Bickel and Levina (2008), we
regularize the above correlation matrix estimator by thresholding its entries as follows:

Ĉ(t)
0 (u) =

(
ĉjk(u)I

(|ĉjk(u)| > t0(u)
√

log(p∕h)∕(nh)
))

1≤j,k≤p
,

where ĉjk(u) is the (j, k)th entry of Ĉ0(u) and I(⋅) is an indicator function and t0(u) is a posi-
tive function of u. The above rate of thresholding is suggested by Theorem 2 in Section 3 below.
Here, p/h is related to the dimension of an approximate parametric model to the original model:
[a, b] is partitioned into (b− a)/h intervals in which the p-dimensional nonparametric model are
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approximated by a p(b− a)/h-dimensional step model. Note that unlike the covariance matrix,
the correlation matrix is scale-invariant and with homogenous diagonals. Therefore, threshold-
ing correlation matrix is expected to make less errors than does thresholding covariance matrix,
in particular, when individual variances 𝜎kk(u), 1≤ k≤ p greatly differ from each other (Cai &
Liu, 2012). Using the above estimators, we construct a plug-in estimator of Σ(u) in form

Σ̂(t)(u) = Q̂0(u)Ĉ
(t)
0 (u)Q̂0(u).

Step 3: Shrink Σ̂(t)(u).In Section 3 below, under sparsity and regularity conditions, we show that
under certain regularity conditions the above thresholded covariance estimator is consistent with
the underlying covariance matrix function as n and p tend to infinity. However, for a finite sam-
ple, the proposed estimator may still be ill-conditioned. To ameliorate it, we propose to shrink
Σ̂(t)(u) to the identity matrix Ip, where the amount of shrinkage is optimized in terms of the
data-driven Frobenius loss. There are other covariance shrinkage methods in the literature, but
most of them were developed for estimating covariance models without covariates. See Bai and
Silverstein (2010), Jolliffe (2002), Donoho et al. (2018) and references therein. To find the opti-
mal amount of shrinkage, we first consider a population version, namely a linear combination
of Ip and Σ̂(t)(u), Σ∗(u) = 𝜌aIp + (1 − 𝜌)Σ̂(t)(u), whose expected Frobenius loss E||Σ∗(u) − Σ(u)||2F
attains the minimum with respect to 0 ≤ 𝜌 ≤ 1 and a ∈ R. The resulting solutions depend on Σ(u)
as well as variability of Σ̂(t)(u). Replacing these unknown quantities by their estimators, we obtain
the following plug-in estimator of Σ(u) with a data-driven optimal amount of shrinkage:

Σ̂(st)(u) =
𝛽

2
p(u)

�̂�
2
p(u) + 𝛽

2
p(u)

p−1tr(Σ̂(t)(u))Ip +
�̂�

2
p(u)

�̂�
2
p(u) + 𝛽

2
p(u)

Σ̂(t)(u), (4)

where

�̂�
2
p(u) = ||Σ̂(t)(u) − ⟨Σ̂(t)(u), Ip⟩Ip||2F .

𝛽
2
p(u) =

1
p

p∑
j=1

p∑
k=1

n∑
i=1

w2
ih(u)((yij − �̂�j(ui))(yik − �̂�k(ui)) − �̂�jk(u))2

× I(|�̂�jk(u)| > t0(u)
√

log(p∕h)∕(nh)).

Note that �̂�2
p(u) is a plug-in bias when we use p−1tr(Σ̂(t)(u))Ip to estimate Σ(u) while 𝛽

2
p(u)

gauges the variability of Σ̂(t)(u) as an estimator of Σ(u). So estimator (4) is intended to strike a
balance between variability and bias of covariance estimators. Our idea is general, which can be
directly used to improve other nonparametric covariance matrix estimators including the DCM.
See the Appendix A of Data S1 for the detailed derivation.

2.2 Effects of unknown zero-entries on bandwidth selection

In Step 1 above, we explore the smoothness of C0(u) with a single bandwidth. This may introduce
a large bias to estimating non-zero entries when C0(u) contains many unknown zero-entries as
illustrated by the following toy example.
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F I G U R E 2 Cross-validation curves with different sparsities. The number attached to each curve is the
associated sparsity index SC0

[Color figure can be viewed at wileyonlinelibrary.com]

Let (n, p)= (250, 100). For simplicity, we assumed that both 𝝁(u) and Q0 were known and esti-
mated C0(u) by using a cross-validated (CV) kernel. To generate an i.i.d. sample (yi, ui)1≤i≤n, we
first randomly drew (ui)1≤i≤n from the uniform distribution over [−0.95, 0.95]. Then, given ui,
we defined Σ(ui) through its square root matrix R(ui)= (rkj)p×p. For a preselected 𝜃 ∈ [0, 1], we
randomly selected p∗ = ⌊p0𝜃⌋ entries from the strictly lower triangle part of R(ui) and assigned
zeros to them. To keep the symmetry of R(ui), we reflected these zero-entries to the upper
triangle part of R(ui). For the remaining entries, for example, (k, j)th entry, we set rkj(ui) =
exp(100ui sin(kj)) sin(𝜋ui). Finally, we obtained C0(ui) = Q0(ui)−1R(ui)2Q0(ui)−1. We calculated
the sparsity index SC0 defined as the proportion of zero-entries in C0(ui). Given ui and C0(ui), we
drew yi from the multivariate normal N(0, C0(ui)).

For 𝜃 = 0.855, 0.91, 0.95, 0.97, 0.98, 0.985, 0.99, 0.995, we used the above sampling procedure
to obtain a sample for each case with the sparsity index SC0 taking values around 0.10, 0.40, 0.74,
0.88, 0.93, 0.95, 0.97, 0.98, respectively. For each sample, we calculated the CV kernel estimates
for C0(ui), 1≤ i≤n and obtained cross-validation values for bandwidth grid points, which resulted
in a CV curve. Note that these curves may have different minimum values. To make them com-
parable, we divided these curves by their minimum values respectively. The plots, displayed in
Figure 2, showed that when the sparsity index increased from 0.10 to 0.98, the curves became
flat and the CV-selected bandwidth tended to infinity. This implied that the CV-based bandwidth
selection was gradually dominated by zero-entries where there were many unknown zero-entries.
This can be explained by the fact that the arithmetic average of yikyT

ij , i = 1, … ,n (equivalent to
choosing an infinite large bandwidth) is an optimal unbiased estimate for the (k, j)th zero-entry,
but not for nonzero entries.

To assess the zero-entry effect with multiple samples, we performed the above sampling
procedure 90 times, obtaining 90 independent datasets. Applying the single-bandwidth kernel

http://wileyonlinelibrary.com
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procedure to each sample, for each ui, we calculated the Frobenius loss between the estimated
and the true values for all zero off-diagonal entries and for all nonzero off-diagonal entries
respectively. We calculated the average Frobenius losses over these ui’s. Box-plots of these average
Frobenius losses were made for each 𝜃 ∈ {0.855, 0.91, 0.95, 0.97, 0.98, 0.985, 0.99, 0.995} as shown
in Figure 3. The result indicated that the average Frobenius losses did increase for nonzero entries
and decreasing for zero-entries when the sparsity index was increasing.

To tackle the problem, we factorize C0(u) further. For example, we can construct a new esti-
mator Ĉ0(u) = Q̂1(u)Ĉ1(u)Q̂

T
1 , where Q̂1 and Ĉ1 are defined in the next subsection. We applied this

new procedure to each of the 90 datasets for the sparsity index SC0 = 0.97. The average Frobenius
losses were presented as box-plots in Figure 4. The result indicated that adding another factoriza-
tion reduced the Frobenius loss for estimating nonzero entries by 35% while the Frobenius losses
for estimating zero-entries under two methods were kept almost the same.

2.3 A multiple factorization approach

To reduce the above zero-entry effect, we further factorize C0(u) into C0(u) = Q(u)Cm(u)Q(u)T

with Q(u)=Q1(u)Q2(u) … Qm(u) and Cm(u) = Q(u)−1Σ(u)Q(u)−T by using preselected invertible
band matrix factors Qk’s. We hope Cm(u) contains fewer zero-entries than does C0(u). This can
reduce the bias effect of these zero-entries. See the Appendix A of Data S1 for some details. For
the prefixed m, we estimate Qv(u), 0≤ v≤m, and Cm(u) in turn with separate kernel bandwidths,
followed by entry-wise thresholding on the resulting plug-in estimator of C0(u). We replaced Step
1 in the variance–correlation based procedure by the above multiple factorization approach with
multiple bandwidths. Here, with multiple bandwidths we aim to improve the flexibility of the
proposed procedure in addressing varying smoothness across entries of C0(u).

There are a few matrix factorization algorithms for estimating a covariance matrix in the liter-
ature, for example, the Cholesky algorithm (Rothman et al., 2010). In this paper, we first estimate
the diagonal entries, Q̂0(u) = diag(�̂�kk(u) ∶ 1 ≤ k ≤ p) with a Q0(u)-specified bandwidth h= h0.
Then, we standardize yi, 1≤ i≤n by using �̂�(ui) and Q̂0(ui):

ỹi = Q̂−1
0 (ui)(yi − �̂�(ui)), 1 ≤ i ≤ n.

Let ỹ(m) denote the mth row of the standardized data matrix ỹ = (ỹ1, … , ỹn). To identify band
matrix factors for C0(u), we recouple the coordinates of Y by maximizing the marginal corre-
lations of consecutive coordinates as follows: Let m1 = 1 and S1 = {2, … , p}. For k= 2, … , p,
define

mk = arg max
m∈Sk−1

Corr(ỹ(m), ỹ(mk−1)),

and Sk = Sk−1 ⧵ {mk}, where Corr(⋅ , ⋅) denotes the operator for calculating the sample correlation
between two random vectors. Let Y *= (Ym1 , … ,Ymp) be the recoupled Y . Then the large entries
in C0(u) are likely rearranged to be close to the diagonal band. To simplify the notation, in the
following we assume that the underlying coordinates have already been coupled, that is, satis-
fying Y =Y * with mk = k, 1≤ k≤ p. In many applications, the above assumption may hold when
coordinates in Y have a natural ordering.
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F I G U R E 4
Frobenius losses for the
methods based on Q0 and
Q1Q0. In each panel, the
left box-plot for Q0-based
estimate and the right
box-plot for Q1Q0-based
estimate. And (a) is for
nonzero entries while (b)
is for zero-entries [Color
figure can be viewed at
wileyonlinelibrary.com]

We opt for the following band matrices as factors whose inverses can be explicitly
calculated:

Q̂1(u) = (q̂(1)
kj )1≤k,j≤p, q̂(1)

kj =

⎧⎪⎪⎨⎪⎪⎩
1, 1 ≤ k = j ≤ p.

n∑
i=1

wih1(u)ỹkiỹ(k+1)i, j = k + 1, 1 ≤ k ≤ p − 1.

0, Otherwise

http://wileyonlinelibrary.com
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Q̂2(u) = (q̂(2)
kj )1≤k,j≤p, q̂(2)

kj =

⎧⎪⎪⎨⎪⎪⎩
1, 1 ≤ k = j ≤ p.

n∑
i=1

wih2(u)ỹkiỹ(k+2)i, j = k + 2, 1 ≤ k ≤ p − 2.

0, Otherwise

⋮

Q̂m(u) = (q̂(m)
kj )1≤k,j≤p, q̂(m)

kj =

⎧⎪⎪⎨⎪⎪⎩
1, 1 ≤ k = j ≤ p.

n∑
i=1

wihm(u)ỹkiỹ(k+m)i, j = k + m, 1 ≤ k ≤ p − m.

0, Otherwise

with bandwidths h1, h2, … , hm. Using the above band matrices, we make the following transfor-
mation

y̆i = Q̂−1
m … Q̂−1

1 ỹi, 1 ≤ i ≤ n.

After the transformation, the new random vector y̆i may have much fewer zero-entries in its
covariance matrix cov(y̆i|ui) than does the original ỹi. For m≥ 1, we estimate Cm(u) by

Ĉm(u) =
n∑

i=1
wihr (u)y̆iy̆

T
i , (5)

with bandwidth hr . With these estimated factors, we reconstruct the following estimator for C0(u):

Ĉ0(u) =
⎧⎪⎨⎪⎩

n∑
i=1

wih0(u)y̆iy̆
T
i , m = 0

Q̂1(u)Q̂2(u) … Q̂m(u)Ĉm(u)(Q̂1(u)Q̂2(u) … Q̂m(u))T , m ≥ 1.
(6)

With Ĉ0 and Q̂0, we constructed a new plug-in estimator Σ̂(u) = Q̂0(u)Ĉ0(u)Q̂0(u).
Finally, replacing Step 1 in the variance–correlation-based procedure by the multiple factor-

ization step above, we end up with a general procedure for estimating covariance matrix.

3 THEORY

In this section, we develop an asymptotic theory for the proposed estimators which covers both
i.i.d. and non i.i.d. cases and thus is more general than Chen & Leng (2016). Under certain
regularity conditions, the proposed estimators are shown to be consistent with the underlying
matrix function if we let the related bandwidths be different from each other but have the same
convergence rate to zero.

Let k0 and ∞
k0+k be the 𝜎-algebras generated by {(yi, ui) : 1≤ i≤ k0} and

{(yi, ui) : k0 + 1≤ k<∞}. Define

𝛼(k) = max
k0≥1

sup
A∈k0 ,B∈∞

k0+k

|P(A)P(B) − P(A ∩ B)|.
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We assume the following regularity conditions:
(C1) The symmetric kernel function K(⋅) on R with derivative K′(⋅) satisfies

K0 = sup
z

K(z) < +∞, K1 = sup
z
|K′(z)| < +∞, ∫ K(z)dz = 1,

∫ zK(z)dz = 0, ∫ z2K(z)dz < +∞, ∫ |z|3k(z)dz < ∞.

(C2) The density function of U, g(u), has the second-order continuous derivative g′′(⋅) over
a compact support [a, b] and infu∈[a,b] g(u) > 0. For any i≠ i1, the joint density of ui and ui1 ,
maxi≠i1 supz,z1∈[a,b] g ii1(z, z1) is bounded.

(C3) There exist positive constants 𝜏2 and 𝜅2 < 1 such that for k≥ 1, 𝛼(k) ≤ exp(−𝜏2k𝜅2).
(C4) There exist constants 0 < 𝜅1 ≤ 1, 𝜏1 > 0 such that

max
1≤j≤p

P(|yij| > v) ≤ exp(1 − 𝜏1v𝜅1).

(C5) The second derivatives of 𝜇j(u) = E[y1j|U = u], 1≤ j≤ p are uniformly bounded in the sense
that max1≤j≤p supu∈[a,b]|𝜇′′

j (u)| < ∞.
(C6) The conditional variance functions 𝜎2

j (u) = E[(yij − 𝜇j(ui))2|ui = u] are bounded below
from zero uniformly for 1≤ j≤ p and u∈ [a, b]. Their first-order derivatives are also uni-
formly bounded. The conditional expectations E[(yij − 𝜇j(ui))(y(i+t)j − 𝜇j(ui+t))|ui = z,ui+t = z1]
with z, z1 ∈ [a, b], 1≤ i<∞, 1≤ t ≤∞, 1≤ j≤ p, are uniformly bounded in i, t, z, and z1.

The above conditions are routinely used in the literature of nonlinear time series analy-
sis (e.g., Fan & Yao, 2003; Lam & Yao, 2012; Zhang & Liu, 2015). It follows from (C5) that
b2 =̂max1≤j≤p supu∈[a,b]|𝜇j(u)| < ∞. (C3) and (C4) assume that the response observations have an
exponentially fast mixing rate and subexponential tails. Note that these conditions are imposed
to facilitate the proofs and thus may not be the weakest possible for establishing the theory below.

Let ĝha (u) =
1
n

∑n
i=1 Kha(ui − u) be a kernel density estimator of g(u). It follows from Proposi-

tion 1 in the Appendix B of Data S1 that ĝha(u) is uniformly consistent with g(u).
Letting 1∕𝛾1 = 1∕𝜅1 + 1∕𝜅2, we state a uniform consistency result for estimator �̂�j(u) in the

following theorem.

Theorem 1. Under Conditions (C1)–(C6), if as n, p→∞ and ha → 0,

(log(p))2∕𝛾1−1∕n = O(1),
log(h−4

a np)
(nha log(p∕ha))𝛾1∕2 = O(1),

(log(nha log(p∕ha)))𝛾1 log(1∕ha)
(nha log(p∕ha))𝛾1(1−𝛾1)∕2 = O(1),

then

max
1≤j≤p

sup
u∈[a,b]

|�̂�j(u) − 𝜇j(u)| = Op

⎛⎜⎜⎝
√

log(p∕ha)
nha

⎞⎟⎟⎠ + O(h2
a).

Note that 0 < 𝛾1 < 1∕2 as 𝜅1 ≤ 1 and 𝜅2 < 1. The above bandwidth condition imposed on ha
holds and

√
log(p∕ha)∕(nha) = o(1) if ha = c0n−1/5 and (log(p))d∕n = o(1) for a constant c0 and

d = max{1∕(2𝛾1), 2∕𝛾1 − 1}.
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Let 1∕𝛾2 = 2∕𝜅1 + 1∕𝜅2. In the next theorem, we show that the entries of the proposed
covariance matrix estimator are consistent with the underlying ones uniformly in u and
indices 1≤ j, k≤ p. We say ha, hv, hr, h→ 0 with the same convergence rate if h/ha + ha/h=O(1),
h/hr + hr/h=O(1), h/hv + hv/h=O(1), 0≤ v≤m.

Theorem 2. Under Conditions (C1)–(C6), if as n, p→∞, ha, hv, hr, h→ 0 with the same rate, for
w= 1, 2, log(p)2∕𝛾w−1∕n = O(1) and

log(nph−4)
(nh log(p∕h))𝛾w∕2 = O(1),

(log(nh log(p∕h)))𝛾w log(1∕h)
(nh log(p∕h))𝛾w(1−𝛾w)∕2 = O(1),

then

max
1≤j,k≤p

sup
u∈[a,b]

|�̂�jk(u) − 𝜎jk(u)| = Op

(√
log(p∕h)

nh
+ h2

)
,

max
1≤j,k≤p

sup
u∈[a,b]

|ĉjk(u) − cjk(u)| = Op

(√
log(p∕h)

nh
+ h2

)
.

Note that 0 < 𝛾2 < 1∕3 as 𝜅1 ≤ 1 and 𝜅2 < 1. The bandwidth condition imposed on ha, hv, hr, h
holds and

√
log(p∕h)∕(nh) = o(1) if ha = c0n−1/5 (which is the optimal bandwidth for the uni-

variate nonparametric regression estimator with c0 a constant) and (log(p))d∕n = o(1) for d =
max{1∕(2𝛾1), 2∕𝛾1 − 1, 1∕(2𝛾2), 2∕𝛾2 − 1}.

Let 𝛼p(u) = ||Σ(u) − ⟨Σ(u), Ip⟩Ip||F and 𝜏np =
√

log(p∕h)∕(nh). Let t̂0(u) be an estimator of the
thresholding function t0(u) used in Σ̂(t)(u) and Σ̂(st)(u). Let mp(u) = max1≤k≤p

∑p
j=1 I(𝜎kj(u) > 0)

be a sparsity index of Σ(u). The smaller mp(u), the sparser Σ(u) is. To state the next theorem, we
introduce the following conditions on separability between Σ(u) and Ip, sparsity and bounds of
Σ(u), respectively.

(C7) 𝜏np∕(log(p∕h)infu∈[a,b]𝛼
2
p(u)) = O(1), supu∈[a,b]mp(u)𝜏np∕𝛼p(u) = o(1).

(C8) There exists a positive constant s1 such that supu∈[a,b]||Σ(u)|| ≤ s1.
(C9) There exists a positive constant s0p such that as p→∞,

s0p∕
√

sup
u∈[a,b]

mp(u)𝜏np → ∞, inf
u∈[a,b]

||Σ(u)|| ≥ s0p.

(C10) supu∈[a,b]|t̂0(u) − t0(u)| = o(1) and there exist positive constants ta < tb such that for ta <

infu∈[a,b]t0(u) ≤ supu∈[a,b] t0(u) < tb.
Note that Condition (C7) implies that Σ(u) is not close to cIp in a distance less than the prod-

uct of the sparsity index and the rate 𝜏np∕ log(p∕h), where c is any arbitrary constant. Conditions
(C8) and (C9) are about the uniform boundedness of ||Σ(u)|| from above and away from zero
in an order of 𝜏np timed by the sparsity index. Finally, we can see from Theorem 3 below that
although (C10) requires the tuning constant t̂0(u) has a finite limit as n tends to infinity, the
order of the convergence rate of the corresponding estimator Σ̂(st)(u) is independent of such a
limit.

Under these conditions, we state a uniform consistent result for Σ̂(st)(u) as follows.
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Theorem 3. Under Conditions (C1)–(C8), if as n, p→∞, ha, hv, hr, h→ 0 with the same rate, and
for w= 1, 2 log(p)2∕𝛾w−1∕n = O(1),nh5∕ log(p∕h) = O(1) and

log(nph−4)
(nh log(p∕h))𝛾w∕2 = O(1),

(log(nh log(p∕h)))𝛾w log(1∕h)
(nh log(p∕h))𝛾w(1−𝛾w)∕2 = O(1),

and if supu∈[a,b]mp(u)𝜏np = o(1), then uniformly in u∈ [a, b],

||Σ̂(st)(u) − Σ(u)|| = Op(mp(u)𝜏np).

In addition to the above conditions, if Condition (C9) holds, then uniformly in u∈ [a, b],

||Σ̂(st)(u)Σ−1(u) − Ip|| = Op(mp(u)𝜏nps−1
0p ) = op(

√
mp(u)𝜏np).

||Σ(u)(Σ̂(st)(u))−1 − Ip|| = Op(mp(u)𝜏nps−1
0p ) = op(

√
mp(u)𝜏np).

||(Σ̂(st)(u))−1 − Σ−1(u)|| = Op(mp(u)𝜏nps−2
0p ) = op(1).

Finally, in addition to the above conditions, if Condition (C10) holds, then the above results
continue to hold after replacing t0(u) by t̂0(u) inΣ̂(t)(u) andΣ̂(st)(u).

Note that if h= c0n−1/5 (c0 is a constant) and for d = max{1∕(2𝛾1), 2∕𝛾1 − 1, 1∕(2𝛾2), 2∕𝛾2 − 1},
(log(p))d∕n = o(1), the above condition imposed on h holds. Also, the above bandwidth
assumption that they have the same convergence rate to zero does not rule out these bandwidths
are different. However, the cross-validation (or the so-called subset) selected bandwidths may
not tend to zero. In particular, some of these bandwidths may tend to infinity when there are
many zeros and a few nonzeros in the underlying covariance matrix. In this situation, simulation
studies in the next section showed that the proposed estimators could reduce the bias and outper-
formed the DCM in terms of integrated mean squared errors. The theoretical development along
this aspect will be spelled out in a future paper.

4 NUMERICAL STUDIES

In this section, to demonstrate the merits of the proposed estimators in finite sample settings,
we applied the proposed procedures to both synthetic and real data. We presented the numerical
results for the proposed procedure using m (m= 0, 1) band matrix factors.

To facilitate the presentation, let tNCM0 and stNCM0 denote the proposed estimators Σ̂(t)(u)
and Σ̂(st)(u), respectively, with m= 0. Let tNCM1 and stNCM1 denote the proposed estimators
respectively with m= 1. Let DCM1 and DCM2 denote three DCM estimators defined by

DCM1(u) = (�̂�1jk(u)I(�̂�1jk(u) ≥ d(u))),

DCM2(u) = (�̂�2jk(u)I(�̂�2jk(u) ≥ d(u))),



ZHANG and LI 15

where d(u) is the level of thresholding and

Σ̂1(u) =
n∑

i=1
wih(u)(yi − �̂�(ui))(yi − �̂�(ui))T =̂ (�̂�1jk(u))1≤j,k≤p,

Σ̂2(u) =
n∑

i=1
wih(u)(yi − �̂�(u))(yi − �̂�(u))T =̂ (�̂�2jk(u))1≤j,k≤p.

Note that DCM1 differs from DCM2 in the way of estimating the residuals: The former
uses estimators yi − �̂�(ui) = Σ(ui)1∕2

𝜺i + 𝝁(ui) − �̂�(ui), 1≤ i≤n while the latter adopts estimators
yi − �̂�(u) = Σ(ui)1∕2

𝜺i + 𝝁(ui) − �̂�(u), 1≤ i≤n. Here, compared to 𝝁(ui) − �̂�(ui), 𝝁(ui) − �̂�(u) =
𝝁(ui) − �̂�(ui) + �̂�(ui) − �̂�(u) has an extra bias �̂�(ui) − �̂�(u). So, DCM2 is expected to perform worse
than DCM1. Following the same procedure as in stNCM0, we improve DCM1 by incorporating
the effects of shrinkage on it. Let sDCM1 denote the optimal shrinkage estimator after replacing
tNCM0 by DCM1 in the definition of stNCM0.

4.1 Choice of tuning parameters
As is common in most smoothing methods, the choice of appropriate tuning parameters plays

an important role in the performance of a regularized estimator. It is prudent to restrict attention
to data-driven choice of the tuning parameters. Here we apply the cross-validation to choose the
values of tuning parameters in a sequential manner as follows.

Bandwidth for estimating 𝝁(u).We let ha = argmin CV𝝁(h) as the optimal bandwidth for the
mean kernel estimator in Equation (1), where

CV𝝁(h) =
1
n

n∑
i=1

||yi − �̂�h,−i(ui)||2𝜔(ui).

Here, �̂�h,−i(ui) is a kernel mean function estimator after dropping the ith observation from the
data. The trimming function 𝜔(u) = I(u(1) < u < u(n−1)) is used for reducing the boundary effects
on CV𝝁(h), where u(k) is the kth order statistic of (ui)n

i=1.
Bandwidth for estimating Q0(u).To select the bandwidth for Q̂(u), for each h, we calcu-

late �̂�kk(−i) ∶ 1 ≤ k ≤ p after dropping the ith observation. We choose the optimal bandwidth
h0 = arg min CV0(h) for Q̂(u), where CV0(h) is a Stein-loss-based cross-validation function defined
by

CV0(h) =
n∑

i=1

p∑
k=1

{
(yki − �̂�k(ui))2

�̂�
2
kk(−i)(ui)

+ log(�̂�kk(−i)(ui))

}
.

Bandwidth for estimating Qk(u), 1≤ k≤m. We choose hk = arg min CVk(h) at which the following
criterion attains the minimum:

CVk(h) =
1
n

n∑
i=1

p−k∑
j=1

(�̂�j(j+k)(−i)(ui) − ỹijỹi(j+k))2,

where �̂�j(j+k)(−i)(ui) is the kernel estimator of the j(j+ k)th correlation 𝜌j(j+k)(ui) based on the
leave-one-out dataset (ỹt,ui)t≠i.



16 ZHANG and LI

Bandwidth for estimating Cm(u). There are two existing cross-validation methods for select-
ing the bandwidth h for Cm(u): One is a Stein-loss-based approach (Yin et al., 2010) which was
however applicable only to low-dimensional data. The other is a subset-based approach (Chen &
Leng, 2016) for high-dimensional data. In this paper, we choose hm+1 = arg min CVC(h) at which
the following criterion attains the minimum:

CVC(h) =
1
n

n∑
i=1

||Ĉm(−i)(ui) − y̆iy̆
T
i ||2F ,

where Ĉm(−i)(ui) is the kernel estimator of Cm(u) based on the leave-one-out dataset (y̆j,ui)j≠i.
Thresholding level for Ĉ(t)(u). Following Bickel and Levina (2008), we split the sample into

two sub-samples called trial and testing samples and select the threshold by minimizing the
Frobenius norm of the difference between the trial-sample-based thresholded estimator and the
testing-sample-based covariance matrix. Specifically, we divide the original sample into two sam-
ples at random of size n1 and n2, where n1 = n(1 − 1∕ log(n)) and n2 = n∕ log(n), and repeat this
N1 times. Here, we set N1 = 100 as the default value according to our numerical experience. Let
Ĉ1,s(u) and Ĉ2,s(u) be the plug-in estimators based on n1 and n2 observations, respectively, with
the bandwidth selected by the leave-one-out cross-validation. Let Ĉ(t)

1,s be the thresholded estima-
tor derived from Ĉ1,s(u) with the thresholding level t0(u). Given u, we select t0(u) by minimizing∑N1

s=1 ||Ĉ(t)
1,s − Ĉ2,s||F∕N1.

Turning parameters for estimating DCM. The bandwidth h and the level of thresholding of the
DCM estimators in (7) are determined by the so-called subset and sample-splitting approaches,
respectively (Chen & Leng, 2016).

4.2 Criteria for performance assessment
We need a criterion to measure the performance of a nonparametric covariance matrix

estimator. There are multiple possible criteria, but one particularly convenient choice is inte-
grated root-squared error (IRSE). For any estimator Ψ̂(u) of Σ(u), u∈ [a, b] the IRSE is defined
as

IRSE(Ψ̂) = ∫
b

a
||Ψ̂(u) − Σ(u)||Fdu ≈ 1

K0

K0∑
k=1

||Ψ̂(vk) − Σ(vk)||F ,
where vk, 1≤ k≤K0 be grids evenly distributed over the interval (a, b). In the following, we set
K0 = 20 for (a, b)= (−1, 1). In our study, we also consider a spectral-norm-based IRSE. The results
are omitted as they are similar to the Frobenius version.

We also evaluate the performance of the proposed procedure in discovering zero entries in
the covariance matrix. Let p1 (p2) be the number of nonzero (zero) entries in Σ(u). For any
estimator Ψ̂(u) of Σ(u), let n11 be the number of true discoveries of nonzero entries in Σ(u)
by Ψ̂(u). Similarly, let n22 denote the number of true discoveries of zero entries in Σ(u) by
Ψ̂(u). Let SEN, SPE and ACC denote sensitivity, specificity, and accuracy in the above testing,
namely

SEN = n11

p1
. SPE = n22

p2
. ACC = n11 + n22

p1 + p2
.
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4.3 Synthetic data
In this subsection, we carried out a set of simulation studies. We considered three settings for

𝝁(u) and Σ(u) in our simulations.
Setting 1: Following Yuan and Cai (2010) and Chen and Leng (2016), we set 𝝁(u) and Σ(u) as

follows. Let 𝝁(u) = (𝜇1(u), … , 𝜇p(u))T with

𝜇j(u) =
50∑

k=1

(−1)k+1

k2 Zjk cos(k𝜋u), 1 ≤ j ≤ p,

where {Zjk : 1≤ j≤ p, 1≤ k≤ 50} is an independent sample drawn from the uniform distri-
bution over [−5, 5]. Let Σ(u) = {𝜎ij(u)}1≤i,j≤p with 𝜎ij(u) = exp(u∕2)[{𝜑(u) + 0.1}I(|i − j| = 1) +
𝜑(u)I(|i − j| = 2) + I(i = j)] and 𝜑(u) is the standard normal density. Note that diag(Σ(u)) =
exp(u∕2)Ip is spherical and the correlation matrix C0(u)= (cij(u))1≤i,j≤p with cij(u) = I(|i − j| =
1) + 𝜑(u)I(|i − j| = 2) + I(i = j) which is equal to zero when |i− j|≥ 3. Therefore, C0(u) is sparse
as it is banded with bandwidth 2.

Setting 2: Following Zhang and Liu (2015), let 𝝁(u) = (𝜇1(u), … , 𝜇p(u))T with

𝜇j(u) = Zj exp
( (u − 𝜏j)2

22

)
sin(2𝜋(u − 𝜏j)), 1 ≤ j ≤ p,

where Zj, j= 1, … , p are independently drawn from uniform distribution U(−5, 5), 𝜏 =
(𝜏1, … , 𝜏p) is a row vector of p evenly spaced points between −1 and 1. Set Σ(u) = (𝜎ij(u))1≤i,j≤p
with 𝜎ij(u) = exp(u∕2)𝜑(u)|i−j|. Note that diag(Σ(u)) = exp(u∕2)Ip is spherical and the correlation
matrix

C0(u)= (cij(u))1≤i,j≤p with cij(u) = 𝜑(u)|i−j|. Therefore, cij(u) is decreasing exponentially fast
but is not sparse.

Setting 3: Let 𝝁(u) be the same as that in Setting 1. Let Σ(u) = AT(u)A(u), where the (i, j)th
entry of A(u) equals

aij(u) = exp
(

u sin(ij)
2

)
{[sin(𝜋u) + 0.1]I(|i − j| = 1)

+ (sin(𝜋u)I(|i − j| = 2) + I(i = j)} .

Note that diag(Σ(u)) = diag(
∑p

j=1 a2
ij(u) ∶ 1 ≤ i ≤ p) is not spherical. C0(u) is sparse as it is

banded with bandwidth 4.
For each combination of (n, p) with n= 100, 200, 500 and p= 50, 100, 150, 300, 500, we

repeated the experiment 90 times, generating 90 datasets of (yi, ui), 1≤ i≤n. Each dataset
was obtained in two steps. In Step 1, we drew ui, i= 1, … , n independently from the uni-
form distribution U(−1, 1). In Step 2, for each given ui, we drew yi from the covariance
model yi = 𝝁(ui) + Σ(ui)1∕2

𝜺i,where 𝜺i, i= 1, … , n were iteratively drawn from the vector VAR(1)
model

𝜺0 = 𝜉0, 𝜺i = 𝜌𝜺i−1 + 𝜉i, i = 1, … ,n,

with 0 ≤ 𝜌 < 1 and 𝜉k, k = 0, 1, … independently sampled from the standard p-dimensional
Normal N(0, Ip). We considered 𝜌 = 0, 0.3, 0.8.
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T A B L E 1 The average (SE in %) of integrated root-squared error for Setting 1

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0

100 50 5.13(25.0) 0.58(3.5) 0.56(3.5) 0.45(3.5) 0.45(3.6) 0.45(3.4) 0.44(3.5)

100 16.21(47.0) 0.63(2.6) 0.61(2.5) 0.50(2.5) 0.49(2.6) 0.49(2.3) 0.48(2.4)

150 49.43(75.6) 0.65(2.1) 0.64(2.1) 0.52(2.1) 0.51(2.2) 0.51(2.0) 0.50(2.0)

300 78.04(48.3) 0.70(1.7) 0.69(1.7) 0.57(1.5) 0.57(1.6) 0.56(1.4) 0.55(1.4)

500 102.88(39.1) 0.75(1.7) 0.74(1.7) 0.61(1.3) 0.60(1.4) 0.59(1.2) 0.58(1.2)

200 50 2.89(8.3) 0.37(2.7) 0.36(2.7) 0.28(2.4) 0.28(2.5) 0.28(2.4) 0.28(2.5)

100 8.84(15.6) 0.39(1.8) 0.38(1.8) 0.30(1.6) 0.30(1.6) 0.30(1.5) 0.30(1.6)

150 18.57(30.1) 0.39(1.6) 0.39(1.7) 0.30(1.5) 0.30(1.5) 0.30(1.5) 0.30(1.5)

300 70.85(32.0) 0.42(1.3) 0.42(1.3) 0.32(1.0) 0.32(1.0) 0.32(1.0) 0.32(1.0)

500 84.86(25.4) 0.45(1.1) 0.45(1.1) 0.33(0.9) 0.33(0.9) 0.33(0.9) 0.33(0.9)

500 50 1.58(3.6) 0.20(1.3) 0.20(1.4) 0.18(1.1) 0.18(1.2) 0.18(1.1) 0.18(1.2)

100 3.37(4.4) 0.21(0.9) 0.21(0.9) 0.18(0.7) 0.18(0.8) 0.18(0.7) 0.18(0.8)

150 6.06(6.5) 0.21(0.8) 0.21(0.8) 0.18(0.6) 0.18(0.6) 0.18(0.6) 0.18(0.6)

300 28.71(24.4) 0.23(0.5) 0.23(0.5) 0.18(0.4) 0.19(0.4) 0.18(0.4) 0.18(0.4)

500 91.00(20.6) 0.25(0.4) 0.25(0.4) 0.18(0.4) 0.19(0.4) 0.18(0.4) 0.19(0.4)

For each combination of (n, p, 𝜌), we applied tNCMm, stNCMm, m= 0, 1, DCM1, sDCM1 and
DCM2 to each of 90 datasets and calculated their IRSE values and (SEN, SPE, ACC) values. The
mean and SE of these values are displayed in Tables 1– 9 below and Tables 1–7 in the Appendix D
(Data S1), respectively. As example, for each of 90 datasets simulated in Setting 1 with n= p= 100,
the CPU time required by DCM1, sDCM1, DCM2, tNCMm and stNCMm, m= 0, 1 to estimate the
covariance matrix function is reported in the Appendix D of Data S1.

The results can be summarized as follows:

• On average, the IRSE loss of each procedure was increasing in the dimension p and in the
degree of serial correlation 𝜌 while decreasing in sample size n.

• The degrees of sparsity and diagonal homogeneity in Σ(u) had an effect on the performance
of these four procedures. For example, when (n, p, 𝜌) = (100, 300, 0), compared to in Setting 1,
the IRSE loss of stNCM0 in Setting 2 increased by 84%. This is not surprising as the degrees of
sparsity and diagonal homogeneity in Setting 2 lead to a higher dimensionality (i.e., the number
of effective parameters in the model) than that in Setting 1.

• Among the seven procedures, stNCM1 performed best in all three settings, followed by stNCM0,
tNCM1, tNCM0, sDCM1, DCM1 and DCM2. In particular, the performance of DCM2 was sub-
stantially worse than its competitors. For example, for (n, p, 𝜌) = (100, 300, 0), in Setting 1,
compared to DCM1, on average tNCM0 and stNCM0 reduced the IRSE loss by 23% and 25%
respectively. tNCM1 and stNCM1 performed slightly better than tNCM0 and stNCM0 in some
cases. Compared to tNCM0, on average stNCM0 reduced the IRSE loss by 3%. Compared to
DCM2, on average DCM1 reduced the IRSE loss by 99%. In Setting 2, compared to DCM1,
on average tNCM0 and stNCM0 reduced the IRSE loss by 12% and 16%, respectively. tNCM1
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T A B L E 2 The average (SE in %) of integrated root-squared error for Setting 1 (continued)

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0.3

100 50 5.79(28.4) 0.62(3.4) 0.60(3.2) 0.49(2.9) 0.48(3.0) 0.49(2.9) 0.47(2.9)

100 18.63(54.9) 0.67(3.0) 0.65(2.9) 0.54(2.5) 0.53(2.5) 0.53(2.3) 0.52(2.3)

150 55.34(74.9) 0.71(2.8) 0.69(2.8) 0.56(2.1) 0.55(2.2) 0.56(1.9) 0.54(2.0)

300 80.55(48.3) 0.76(2.1) 0.75(2.0) 0.62(1.6) 0.60(1.6) 0.60(1.5) 0.59(1.5)

500 102.59(51.0) 0.82(3.0) 0.81(2.9) 0.65(1.1) 0.64(1.1) 0.64(1.0) 0.62(1.0)

200 50 3.05(9.4) 0.40(2.5) 0.39(2.5) 0.31(2.1) 0.31(2.2) 0.31(2.1) 0.31(2.1)

100 8.17(15.7) 0.42(1.8) 0.41(1.8) 0.32(1.5) 0.32(1.5) 0.32(1.5) 0.32(1.5)

150 17.63(28.1) 0.43(1.8) 0.42(1.7) 0.33(1.5) 0.33(1.5) 0.33(1.5) 0.33(1.5)

300 72.98(32.4) 0.46(1.5) 0.46(1.5) 0.35(1.0) 0.35(1.0) 0.35(1.0) 0.35(1.0)

500 93.09(29.2) 0.50(1.2) 0.49(1.2) 0.37(0.8) 0.37(0.9) 0.37(0.8) 0.37(0.8)

500 50 1.56(4.1) 0.22(1.2) 0.21(1.3) 0.19(1.0) 0.19(1.0) 0.19(0.9) 0.19(1.0)

100 3.35(4.8) 0.22(1.0) 0.22(1.0) 0.19(0.7) 0.19(0.8) 0.19(0.7) 0.19(0.8)

150 6.43(6.6) 0.22(0.9) 0.22(1.0) 0.19(0.7) 0.19(0.7) 0.19(0.7) 0.19(0.7)

300 27.20(24.8) 0.24(0.6) 0.24(0.6) 0.19(0.5) 0.19(0.5) 0.19(0.5) 0.19(0.5)

500 92.53(25.5) 0.26(0.4) 0.26(0.4) 0.19(0.4) 0.19(0.4) 0.19(0.4) 0.19(0.4)

T A B L E 3 The average (SE in %) of integrated root-squared error for Setting 1 (continued)

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0.8

100 50 5.65(36.5) 1.40(12.6) 1.19(11.0) 1.31(11.8) 1.13(10.4) 1.31(11.9) 1.13(10.5)

100 18.08(51.4) 1.89(12.6) 1.57(11.2) 1.78(11.8) 1.49(10.5) 1.78(11.8) 1.48(10.6)

150 55.78(61.0) 2.33(12.9) 1.93(11.7) 2.20(12.2) 1.81(10.9) 2.20(12.3) 1.80(11.0)

300 80.82(41.6) 3.22(12.6) 2.66(11.5) 3.06(12.0) 2.48(10.9) 3.06(12.0) 2.47(10.9)

500 102.70(42.6) 4.13(10.8) 3.38(10.0) 3.93(10.2) 3.15(9.4) 3.93(10.2) 3.15(9.4)

200 50 3.08(14.3) 1.11(7.8) 0.96(6.6) 1.03(7.1) 0.91(6.2) 1.03(7.2) 0.91(6.3)

100 8.18(19.6) 1.50(7.3) 1.25(6.3) 1.40(6.8) 1.19(6.0) 1.40(6.8) 1.19(6.0)

150 17.34(30.2) 1.83(6.7) 1.51(5.9) 1.71(6.2) 1.43(5.6) 1.71(6.2) 1.42(5.6)

300 73.00(32.9) 2.54(5.9) 2.09(5.4) 2.40(5.5) 1.96(5.0) 2.40(5.6) 1.96(5.1)

500 93.15(26.7) 3.25(6.9) 2.67(6.3) 3.08(6.4) 2.48(5.8) 3.08(6.5) 2.48(5.8)

500 50 1.62(6.2) 0.74(4.1) 0.66(3.2) 0.69(3.2) 0.63(2.7) 0.69(3.2) 0.63(2.7)

100 3.38(6.2) 1.03(3.2) 0.88(2.5) 0.95(2.8) 0.84(2.4) 0.95(2.8) 0.84(2.4)

150 6.48(8.9) 1.25(3.0) 1.05(2.5) 1.16(2.8) 1.00(2.5) 1.16(2.8) 1.00(2.5)

300 26.59(28.8) 1.72(3.0) 1.42(2.7) 1.62(2.8) 1.35(2.5) 1.62(2.8) 1.35(2.5)

500 92.73(25.0) 2.20(2.7) 1.80(2.3) 2.08(2.5) 1.71(2.2) 2.08(2.5) 1.71(2.2)
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T A B L E 4 The average (SE in %) of integrated root-squared error for Setting 2

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0

100 50 11.89(25.9) 0.53(1.9) 0.50(2.0) 0.45(2.3) 0.43(2.3) 0.43(2.5) 0.41(2.4)

100 37.33(126.7) 0.55(1.4) 0.53(1.5) 0.48(1.5) 0.46(1.6) 0.46(1.9) 0.44(1.9)

150 62.90(59.7) 0.56(1.5) 0.54(1.5) 0.50(1.6) 0.48(1.7) 0.47(1.5) 0.45(1.5)

300 87.77(59.1) 0.59(1.8) 0.57(1.9) 0.52(1.1) 0.51(1.1) 0.50(1.3) 0.48(1.3)

500 114.85(50.7) 0.61(1.7) 0.59(1.7) 0.54(0.7) 0.53(0.8) 0.52(0.8) 0.50(0.8)

200 50 6.12(21.5) 0.39(1.9) 0.37(1.8) 0.32(1.6) 0.31(1.6) 0.31(1.6) 0.30(1.6)

100 16.99(23.0) 0.40(1.1) 0.39(1.1) 0.33(1.1) 0.32(1.1) 0.31(1.1) 0.31(1.1)

150 35.62(50.7) 0.40(1.2) 0.39(1.1) 0.33(1.0) 0.33(1.0) 0.32(0.9) 0.31(0.9)

300 90.48(44.9) 0.42(1.1) 0.41(1.0) 0.34(0.8) 0.34(0.8) 0.32(0.8) 0.32(0.8)

500 116.32(39.7) 0.44(0.9) 0.44(0.9) 0.35(0.7) 0.34(0.7) 0.33(0.7) 0.32(0.7)

500 50 2.82(7.9) 0.26(0.9) 0.26(0.9) 0.24(0.9) 0.23(1.0) 0.23(0.9) 0.23(1.0)

100 7.30(8.7) 0.27(0.5) 0.26(0.5) 0.24(0.5) 0.24(0.6) 0.24(0.5) 0.24(0.5)

150 13.83(9.6) 0.27(0.4) 0.27(0.5) 0.25(0.4) 0.24(0.4) 0.24(0.4) 0.24(0.4)

300 84.40(81.0) 0.28(0.3) 0.28(0.3) 0.25(0.2) 0.25(0.3) 0.25(0.2) 0.24(0.2)

500 117.46(26.2) 0.30(0.2) 0.30(0.2) 0.25(0.2) 0.25(0.2) 0.25(0.2) 0.25(0.2)

T A B L E 5 The average (SE in %) of integrated root-squared error for Setting 2 (continued)

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0.3

100 50 11.91(26.3) 0.55(2.3) 0.52(2.3) 0.48(3.0) 0.46(2.8) 0.47(3.3) 0.44(3.0)

100 37.55(133.3) 0.56(1.6) 0.54(1.6) 0.50(1.6) 0.48(1.7) 0.49(1.9) 0.47(1.9)

150 62.92(54.1) 0.58(1.6) 0.56(1.6) 0.52(1.4) 0.50(1.5) 0.50(1.5) 0.48(1.5)

300 87.63(53.6) 0.61(1.9) 0.59(1.9) 0.55(0.8) 0.53(0.9) 0.53(1.0) 0.51(1.1)

500 114.89(59.9) 0.63(2.2) 0.61(2.2) 0.56(0.7) 0.54(0.7) 0.55(0.8) 0.53(0.8)

200 50 6.22(21.0) 0.41(1.7) 0.39(1.6) 0.33(1.7) 0.32(1.6) 0.33(1.8) 0.32(1.7)

100 16.92(21.6) 0.42(1.6) 0.40(1.6) 0.35(1.6) 0.34(1.6) 0.33(1.7) 0.32(1.6)

150 35.65(52.2) 0.43(1.1) 0.41(1.1) 0.35(0.9) 0.34(0.9) 0.34(1.0) 0.33(1.0)

300 90.40(44.1) 0.45(1.2) 0.44(1.2) 0.37(0.8) 0.36(0.8) 0.35(0.9) 0.34(0.9)

500 116.35(37.4) 0.47(1.2) 0.46(1.2) 0.38(0.8) 0.37(0.8) 0.36(0.9) 0.35(0.9)

500 50 2.81(8.5) 0.27(0.8) 0.27(0.9) 0.25(0.8) 0.24(0.8) 0.24(0.8) 0.24(0.8)

100 7.35(7.7) 0.28(0.7) 0.27(0.7) 0.25(0.5) 0.25(0.5) 0.25(0.5) 0.25(0.5)

150 13.71(9.7) 0.28(0.5) 0.28(0.5) 0.25(0.4) 0.25(0.4) 0.25(0.4) 0.25(0.4)

300 84.65(54.8) 0.29(0.4) 0.29(0.4) 0.25(0.3) 0.25(0.3) 0.25(0.3) 0.25(0.3)

500 117.48(26.7) 0.30(0.3) 0.30(0.3) 0.25(0.2) 0.25(0.2) 0.25(0.2) 0.25(0.2)
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T A B L E 6 The Average (SE in %) of integrated root-squared error for Setting 2 (continued)

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0.8

100 50 11.81(29.6) 1.31(10.5) 1.09(8.9) 1.23(9.3) 1.03(8.1) 1.22(9.4) 1.03(8.2)

100 37.55(152.3) 1.78(11.2) 1.46(10.0) 1.68(10.5) 1.37(9.4) 1.67(10.6) 1.37(9.5)

150 62.89(57.0) 2.16(11.2) 1.76(10.1) 2.04(10.5) 1.65(9.4) 2.04(10.5) 1.65(9.5)

300 87.59(52.0) 3.02(9.1) 2.46(8.4) 2.86(8.7) 2.29(7.9) 2.86(8.7) 2.29(8.0)

500 114.95(56.6) 3.88(9.7) 3.15(9.0) 3.68(9.4) 2.93(8.7) 3.68(9.4) 2.93(8.7)

200 50 6.00(26.4) 1.07(5.6) 0.89(4.9) 0.99(5.3) 0.84(4.8) 0.99(5.3) 0.84(4.8)

100 16.69(29.2) 1.45(5.5) 1.18(4.8) 1.35(5.3) 1.12(4.7) 1.35(5.3) 1.12(4.7)

150 36.69(64.7) 1.77(5.9) 1.44(5.3) 1.66(5.6) 1.36(5.1) 1.66(5.6) 1.36(5.1)

300 90.40(45.6) 2.46(4.9) 2.00(4.5) 2.33(4.6) 1.88(4.2) 2.33(4.6) 1.88(4.2)

500 116.27(38.8) 3.15(6.0) 2.56(5.5) 2.99(5.7) 2.39(5.2) 2.99(5.7) 2.39(5.2)

500 50 2.80(10.2) 0.73(3.2) 0.62(2.5) 0.67(2.7) 0.60(2.3) 0.67(2.7) 0.59(2.4)

100 7.13(11.8) 1.01(2.7) 0.83(2.2) 0.93(2.5) 0.80(2.3) 0.93(2.5) 0.79(2.3)

150 13.40(13.8) 1.22(2.5) 1.00(2.2) 1.14(2.3) 0.95(2.1) 1.14(2.4) 0.95(2.2)

300 82.86(86.7) 1.69(2.6) 1.37(2.3) 1.59(2.4) 1.31(2.2) 1.59(2.4) 1.30(2.2)

500 117.47(26.9) 2.16(2.2) 1.75(1.9) 2.05(2.1) 1.66(1.8) 2.05(2.1) 1.66(1.9)

T A B L E 7 The average (SE in %) of integrated root-squared error for Setting 3

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0

100 50 7.20(40.1) 3.52(16.4) 3.41(13.8) 3.03(13.5) 3.00(14.2) 2.99(22.5) 2.94(22.5)

100 16.44(45.7) 3.80(7.3) 3.79(6.6) 3.25(5.5) 3.22(5.9) 3.19(5.7) 3.14(6.0)

150 50.77(57.9) 3.94(6.5) 3.92(6.1) 3.39(4.1) 3.36(4.3) 3.34(4.0) 3.29(4.1)

300 78.24(68.1) 4.10(6.2) 4.08(5.9) 3.58(3.0) 3.54(2.9) 3.52(2.9) 3.47(2.9)

500 102.97(69.5) 4.28(7.9) 4.25(7.8) 3.71(2.2) 3.67(2.2) 3.61(2.2) 3.56(2.2)

200 50 4.77(22.4) 2.79(12.9) 2.72(10.9) 2.37(9.9) 2.35(10.2) 2.28(9.0) 2.25(9.1)

100 10.37(27.3) 2.96(9.6) 2.92(8.6) 2.58(5.5) 2.57(5.7) 2.47(4.7) 2.45(4.8)

150 16.73(25.1) 3.50(5.8) 3.50(5.8) 2.72(4.5) 2.70(4.6) 2.59(3.5) 2.57(3.7)

300 71.16(46.6) 3.70(3.7) 3.69(3.6) 2.99(3.0) 2.96(3.1) 2.81(2.5) 2.78(2.5)

500 85.06(43.2) 3.98(4.5) 3.96(4.4) 3.17(2.1) 3.13(2.2) 2.95(1.8) 2.92(1.8)

500 50 3.08(9.9) 2.06(6.4) 2.02(5.9) 1.61(6.2) 1.61(6.3) 1.55(5.2) 1.55(5.4)

100 5.40(12.8) 2.18(5.8) 2.16(5.3) 1.87(4.3) 1.87(4.4) 1.74(3.8) 1.73(3.9)

150 7.97(9.3) 2.23(4.7) 2.21(4.5) 2.03(3.3) 2.03(3.4) 1.88(2.9) 1.87(3.0)

300 20.07(14.9) 2.34(3.7) 2.33(3.6) 2.31(2.2) 2.31(2.3) 2.11(1.9) 2.10(2.0)

500 90.35(26.8) 3.25(1.3) 3.26(1.3) 2.52(1.8) 2.51(1.8) 2.28(1.6) 2.27(1.6)
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T A B L E 8 The average (SE in %) of integrated root-squared error for Setting 3 (continued)

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0.3

100 50 7.97(43.3) 3.56(18.8) 3.44(15.6) 3.05(11.3) 3.01(11.9) 3.48(418.0) 3.43(412.5)

100 18.17(47.0) 3.84(8.4) 3.81(7.8) 3.27(5.2) 3.23(5.5) 3.22(5.5) 3.17(5.7)

150 56.43(68.4) 3.97(7.8) 3.95(7.2) 3.41(4.3) 3.38(4.6) 3.38(4.6) 3.33(4.7)

300 80.49(72.2) 4.13(7.5) 4.10(7.1) 3.58(2.9) 3.54(2.8) 3.56(2.7) 3.50(2.6)

500 102.53(77.3) 4.28(9.9) 4.25(9.8) 3.70(2.3) 3.66(2.3) 3.65(2.2) 3.60(2.2)

200 50 4.79(21.0) 2.83(11.5) 2.76(9.7) 2.40(8.5) 2.37(8.8) 2.32(7.6) 2.29(7.9)

100 9.83(23.5) 3.05(10.0) 3.00(9.2) 2.60(5.8) 2.58(5.9) 2.50(4.6) 2.47(4.7)

150 16.20(23.9) 3.55(6.4) 3.54(6.5) 2.73(4.9) 2.71(5.1) 2.62(4.4) 2.59(4.5)

300 73.19(46.7) 3.75(4.2) 3.74(4.1) 2.99(3.1) 2.96(3.1) 2.83(2.7) 2.80(2.7)

500 93.02(41.0) 4.00(4.9) 3.98(4.8) 3.15(2.7) 3.12(2.8) 2.97(1.9) 2.93(2.0)

500 50 2.99(12.1) 2.10(8.0) 2.06(7.1) 1.64(5.7) 1.64(5.8) 1.58(5.0) 1.57(5.0)

100 5.38(15.9) 2.22(6.1) 2.19(5.5) 1.89(4.4) 1.88(4.6) 1.76(3.8) 1.76(3.9)

150 7.97(7.9) 2.27(5.0) 2.25(4.7) 2.05(3.5) 2.04(3.6) 1.90(3.0) 1.89(3.1)

300 18.99(14.3) 2.38(4.4) 2.37(4.2) 2.32(2.4) 2.31(2.4) 2.12(2.0) 2.11(2.1)

500 91.60(30.6) 3.28(1.8) 3.28(1.8) 2.51(1.6) 2.50(1.7) 2.29(1.5) 2.28(1.5)

T A B L E 9 The average (SE in %) of integrated root-squared error for Setting 3 (continued)

n p DCM2 DCM1 sDCM1 tNCM0 stNCM0 tNCM1 stNCM1

𝜌 = 0.8

100 50 8.26(58.0) 4.64(51.0) 4.19(35.7) 4.18(30.2) 3.72(17.9) 4.17(30.9) 3.70(18.8)

100 18.14(49.4) 5.98(41.0) 5.19(28.0) 5.30(31.2) 4.43(19.0) 5.28(31.0) 4.41(19.1)

150 50.71(628.7) 7.11(50.6) 5.99(37.3) 6.30(35.0) 5.07(22.5) 6.29(35.0) 5.06(22.9)

300 78.96(66.1) 9.36(36.8) 7.49(28.5) 8.43(34.4) 6.43(23.2) 8.41(34.3) 6.41(23.3)

500 101.14(67.3) 11.57(33.2) 9.07(28.0) 10.58(29.2) 7.83(22.3) 10.56(29.4) 7.81(22.7)

200 50 5.54(37.8) 3.84(40.0) 3.56(29.0) 3.53(20.5) 3.13(13.0) 3.47(22.9) 3.09(15.3)

100 10.37(25.5) 4.81(44.4) 4.46(32.0) 4.50(17.6) 3.80(10.8) 4.43(19.2) 3.73(12.4)

150 16.49(28.1) 6.22(44.6) 5.40(32.2) 5.31(15.4) 4.32(9.7) 5.24(16.7) 4.26(11.0)

300 70.79(46.4) 8.23(20.6) 6.66(16.6) 7.04(15.8) 5.43(11.3) 6.97(16.5) 5.37(12.1)

500 91.21(37.8) 10.10(20.8) 8.00(16.9) 8.80(17.8) 6.58(13.2) 8.74(18.3) 6.53(13.8)

500 50 3.45(21.6) 2.64(20.0) 2.53(16.9) 2.46(14.3) 2.30(11.0) 2.43(15.3) 2.28(11.9)

100 6.01(16.1) 3.00(20.6) 2.93(18.8) 3.26(9.8) 2.92(5.6) 3.21(10.9) 2.88(6.8)

150 8.25(11.4) 3.30(18.7) 3.24(17.2) 3.84(7.0) 3.33(4.4) 3.78(7.8) 3.28(5.1)

300 19.17(15.3) 4.23(36.2) 4.15(32.2) 5.03(7.7) 4.13(5.3) 4.98(8.5) 4.10(6.2)

500 40.05(34.0) 7.23(8.4) 5.91(6.4) 6.21(7.1) 4.91(4.9) 6.18(7.8) 4.91(5.6)
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and stNCM1 performed slightly better than tNCM0 and stNCM0, in particular, in Setting 3.
Compared to DCM2, on average DCM1 reduced the IRSE loss by 99%. Compared to tNCM,
on average stNCM reduced the IRSE loss by 5%. In Setting 3, compared to DCM1, on average
tNCM0 and stNCM0 reduced the IRSE by 14% and 15%, respectively. Compared to DCM2, on
average DCM1 reduced the loss by 94%. Compared to tNCM0, on average stNCM0 reduced the
IRSE loss by 2%. tNCM1 and stNCM1 performed substantially better than their counterparts
tNCM0 and stNCM0. The similar conclusion can be made for dependent samples when 𝜌 = 0.3
and 0.8. In particular, the optimal shrinkage can reduce the serial correlation effect on the
proposed procedures stNCM0 and stNCM1.

• Similar results were obtained in terms of ACC. See Tables 1–7 in the Appendix D of Data S1.
• The CPU-time costs of tNCMm and stNCMm, m= 0, 1, are less than those of DCM1 and DCM2.

See Figures 2 and 3 in the Appendix D of Data S1.

4.4 Asset return data
Capital asset pricing model (CAPM) is a model that describes the relationship between system-

atic risk and expected return for assets, which is widely used throughout finance for the pricing of
risky assets. However, the assumption that asset returns are linearly related to the market return
is imposed on the model. The primary goal of this study was to extend the CAPM to the nonlinear
setting. In particular, we are interested in how the volatility and co-volatility of a group of asset
returns depend on the market return.

For this purpose, from the database of Yahoo Finance, we collected monthly return data of
75 assets across eight sectors over three time-periods, namely, before-financial-crisis period from
February 2001 to January 2007, in-financial-crisis period from February 2007 to January 2010
and after-financial-crisis period from February 2010 to December 2017. The sector distribution
of these assets as follows. Technology: AAPL, AMD, HPQ, IBM, IIN, INTC, LNGY, LOGI, MSFT,
NTAP, NVDA, SNE, TACT, and WDC. Health care: AET, AMGN, AZN, BAX, CVS, GILD, GSK,
HUM, IMMU, JNJ, LLY, MRK, NVS, PFE, TECH, and UNH. Energy: BP, CVX, OXY, RDS-B, SU
and XOM. Financial services: C, GS, HSBC, JPM, MS, PGR, RF, and THG. Communication ser-
vices: SHEN, T and TEO. Consumer defensive: BIG, DLTR, FRED, KO, TGT, TUES, UN, and
WMT. Consumer cyclical: AMZN, EMMS, KSS, SIRI, and TM. Industrial: BA, CAJ, DY, EME,
FIX, GE, GVA, IR, MMM, MTZ, PWR, SKYW, UPS, UTX, and VMI. We also collected the index
return of S&P500 which was treated as the market’s return.

We applied the proposed stNCM0 and stNCM1 to the data for each time-period, obtaining
almost the same result. Here, we reported the corresponding estimates for mean 𝝁(u) and covari-
ance matrix Σ(u). Note that the diagonals of estimated Σ(u) show the volatility of individual
returns while estimated correlation coefficient matrix C0(u) captures cross-sectional relationships
in these returns.

We plotted the estimated individual mean functions and the estimated volatility functions
in Figure 1, revealing a number of assets which had nonlinear relationships to the market
return. The degree of this nonlinearity significantly decreased after financial crisis, indicating
that the CAPM fitted to the market better than before the financial crisis. See the Appendices
E and F of Data S1 for more details. Figure 1 also shows that the individual volatility of the
assets increased a lot during the financial crisis period but returned to normal after the finan-
cial crisis. The pattern of the dependence of the volatility on the market also changed a lot
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after financial crisis: Changes from nonconstant volatility functions before the financial cri-
sis to almost constant volatility functions after the financial crisis. We also investigated effects
of the financial crisis on the co-volatility of the selected assets by the estimated nonzero cor-
relation coefficient functions. By use of the estimated covariance matrix functions, in each
time-period, we identified the associated pairs of assets that were of nonzero market-dependent
conditional correlation coefficients (and nonzero conditional co-volatility). We further con-
ducted asymptotic tests for significance of co-volatility for these pairs as follows. For any
pair of assets (a, b), let Corr(a,b)(u) denote its correlation coefficient as a function of u (the
market’s return) and with estimator ̂Corr(a,b)(u). Let F̂(a,b)(u) = 0.5 log(1 + ̂Corr(a,b)(u))∕ log(1 −
̂Corr(a,b)(u)) be Fisher’s Z transformation. To test H0 : Corr(a,b)(u)≢ 0, we considered the test

statistics

Avec(a,b) =
n∑

i=1
|F̂(a,b)(ui)|∕n ≈ N(E[|F(a,b)(U)|], var(|F(a,b)(U)|)∕n),

and calculated the approximate P-value

P(
√

nAvec(a,b)∕
√

̂var(Corr(a,b)(U))|||N(0, 1)),

where the sample variance of |F̂(a,b)(ui)|, 1 ≤ i ≤ n is denoted by ̂var(|F(a,b)(U)|) and P(⋅ |N(0, 1))
is the cumulative distribution function of the standard normal N(0, 1). Then, even after Bon-
ferroni correction for multiple testing, these P-values were all significant (< 10−2) for the above
selected pairs of assets. The final list of significant pairs are as follows:

• Before-financial-crisis. There were 1, 14, 1 pairs existed within Technology, Energy and
Consumer-Defensive, respectively.

• In-financial-crisis. There were 4, 1, 8,1, 4,1, 1,1,1 pairs of correlated assets presented within
Technology, Industrial, Energy, Consumer Defensive, Health Care and Financial Services,
respectively. Also, there was a pair of correlated assets belonging two different sectors: Indus-
trial and Consumer cyclical, Consumer Cyclical and Consumer Defensive, and Financial
Service and Industrial.

• After-financial-crisis. There were 3, 2, 10, 1, 11, and 12 pairs of assets within Technology, Indus-
trial, Energy, Consumer defensive, Health care, and Financial services. There were 1, 1, 1, 1 and
2 pairs of assets between Financial service and Industrial, between consumer defensive and
Financial services, between Consumer cyclical and Consumer defensive, between Technology
and Industrial, and between Health Care, and Consumer Defensive.

The results indicate that before financial crisis, there were only 16 significant within-sector
co-volatility connections among these assets. In particular, there were no significant
cross-sectional co-volatility connections among these assets. The number of co-volatility assets
within and across sectors was significantly increasing during and after financial-crisis: The num-
ber of within-sector co-volatility connections increased from 16 to 22 during the financial crisis
period and to 37 after the financial crisis. The number of between-sector co-volatility connec-
tions increased from 0 to 3 during the financial crisis period and to 7 after the financial crisis.
This implies that in response to the financial crisis, the financial market has been more closely
integrated than before the financial crisis.
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5 DISCUSSION AND CONCLUSION

Estimating covariate-dependent covariance matrix Σ(u) of a high-dimensional response vector
poses a big challenge to contemporary statistical research. The existing kernel methods in Chen
and Leng (2016) and Yin et al. (2010) might not be flexible enough to capture varying smoothness
across key parts of the matrix as they used a single bandwidth for all entries ofΣ(u). Here, we have
proposed a novel estimation procedure to overcome this obstacle, based on a variance–correlation
factorization of Σ(u), namely Σ(u) = Q0(u)C0(u)QT

0 (u), where Q0(u) = diag(Σ(u))1∕2 and the cor-
relation matrix function C0(u) is further factorized into the product of multiple band matrices.
The proposal has been implemented in two steps. In Step 1, we estimate Q0(u) and C0(u)
robustly by use of separate bandwidths for band matrices, followed by thresholding entries of
the estimated C0(u). In Step 2, substituting these estimators in the above factorization formula
to obtain a plug-in estimator, followed by an optimal shrinkage from a decision-making point of
view.

We have conducted a set of simulations to demonstrate that the new proposal outperforms
the existing DCM approach in terms of estimation loss and CPU-time cost. To illustrate our new
proposal, we have applied it to a dataset of asset returns. We have developed a nonparametric
capital asset pricing model to capture volatility and co-volatility among these risky assets. We
have showed that under some sparsity conditions, the proposed estimator is consistent with the
underlying covariance matrix as both the sample size and the dimension tend to infinity. There
are a few important topics which are remained to address but beyond the scope of this paper, such
as nonparametric nonlinear shrinkage.
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