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Abstract

The thesis aims to develop methodologies for estimating high-dimensional
nonparametric covariance models and the change-point detection in time series
segments respectively.

With the development of statistical inference and the availabilities of big
data, estimation of covariate-dependent conditional covariance matrix in a high-
dimensional space poses a challenge to contemporary statistical research. The
existing kernel estimators may not be adaptive to varying smoothness across
different entries due to using a single bandwidth to explore the smoothness of
the target matrix function. The nonparametric estimation of covariance matrix
function may be degenerated or ill-conditioned when one confronts the curse of di-
mensionality. Furthermore, sparsity also has a significant effect on the bandwidth
selection as zero entries have smoothness different from the non-zero entries. If
the sparsity is high, then the zero entries will dominate the procedure of band-
width selection and let the bandwidth go to infinity.

To address these issues, we have considered two possible methods. First,
compared to the single bandwidth in the existing kernel estimators, we have
adopted the multiple bandwidths for the different entries of covariance matrix.
Meanwhile, we have also kept the covariance estimator positive definite. Second,
one can detect the zero entries in advance and omit them temporarily. Next,
the classical kernel estimation with single bandwidth can be applied to the rest
of entries. Finally, considering the positive definiteness, the covariance estimator
can be obtained by combining the estimators of non-zero entries and the detection
of zero entries.

Based on the above analysis, we have proposed two novel frameworks in this
thesis. One is the factorized estimation of high-dimensional nonparametric co-
variance model (NCM), the other is the so-called Divide-and-Combine estimation
of high-dimensional nonparametric covariance model.

In the former, factorizing the target matrix into factors plays a significant
role in improving the performance of NCM. These factors are in turn estimated
by the kernel approach. The resulting estimator of covariance matrix is further
regularized by thresholding and optimal shrinkage. Under certain mixing and
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sparsity conditions, we show that the proposed estimator is well-conditioned and
uniformly consistent with the underlying matrix even when the sample is depen-
dent. A set of simulation studies show that the proposed estimator significantly
outperforms its competitors in terms of integrated root-squared estimation error
and computational speed. A real application of factorized NCM to a financial
return dataset shows that factorized NCM can detect a number of interesting
volatility and co-volatility patterns over different time periods.

In the latter, the key idea of Divide-and-Combine approach for the nonpara-
metric covariance matrix is to divide it into three parts: the diagonal entries, the
off-diagonal zero entries and the off-diagonal nonzero entries. We combine the
three part estimations to form an estimator of the whole covariance matrix. We
apply this model to seven scenarios, and the results show that the Divide-and-
Combine NCM framework could also address the entries’ smoothness problem
under sparsity. The network analysis based on the historical return dataset shows
that there exists a significant network change over the financial periods.

Besides the two methods of nonparametric covariance model, this thesis also
aims to provide a method for the change-point detection in time series segments.

The change-point detection in time series segments thrives in many fields such
as neurology, cardiology and sports science. The classical change-point detection
methods can not be applied to the segments of time series directly because the
change-point of time series segments are totally different from the change-point
within a piece of time series. To coordinates with the existing methods, we need
an appropriate statistic to summarize the segments into scalars or scores, then
apply the change-point detection method to the scalars or scores.

We have proposed an innovative nonparametric relative entropy (RlEn) for
the change-point detection in time series segments. It is a fact that the rela-
tive entropy is not only transformation invariant but also background-noise-free.
More generally, we extend the relative entropy to the nonparametric settings. We
have not only clarified the detailed steps of the nonparametric RlEn estimation,
but also established a consistency theory of nonparametric RlEn. Under certain
assumptions, the limiting distribution of nonparametric RlEn is Gaussian normal
with of order

√
nh(m+1)/2 where m has an upper bound. Furthermore, we recom-

mand using the BIC criterion to select the pre-determined parameter m. The
consistency theory of BIC is developed to ensure that the estimator converges
to the true lag order with probability 1. The results show that our algorithms
of lag order selection and change-point detection using the RlEn are efficient
in nonparametric settings. Finally, we apply our method to two real datasets:
muscle contraction and Covid-19 dataset respectively to verify its performance in
practice.
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Chapter 1

Introduction

In contemporary statistical inference, covariance matrix estimation attracts
lots of interests, and remarkable achievements have been made in the past two
decades (Pourahmadi, 2013). For the estimation of covariance matrix in multiple
regression under high-dimensional settings, the challenges of high-dimensionality
and positive definiteness are extensively studied (Pourahmadi, 2013). There exist
many classical methods in literature to make the covariance matrix positive def-
inite in high-dimensional settings. For example, the sparse principal component
analysis (PCA) (Shen & Huang, 2008; Johnstone & Lu, 2009), sparse singular
value decomposition (SSVD) (Witten et al., 2009; Lee et al., 2010; Chen et al.,
2012; Yang et al., 2014), sparse Gaussian graphic models (Huang et al., 2006;
Yuan & Lin, 2007; Friedman et al., 2008; Lam & Fan, 2009; Peng et al., 2009;
Rothman, 2012) and their variants. The common underlying assumption in the
above models is that the covariance matrix is fixed. However, the covariance
matrix could be covariate-dependent in practice. In this circumstance, we want
to estimate covariance matrix function.

In literature, there are a lot of approaches on the nonparametric covariance
function estimation (e.g., see Hall et al., 1994; Dette & Neumeyer, 2001; Yin
et al., 2010; Li, 2011; Chen et al., 2013; Chen & Leng, 2016; Chen et al., 2018;
Wang et al., 2020; Qiao et al., 2020, and among others). Basically, there are
two kinds of approaches on the nonparametric covariance function estimation.
The first kind of approach directly estimates covariance matrix function or its
inverse function. Covariance matrix and its precision matrix play a significant
role in time-varying graphic model (e.g., Chen et al., 2013). For the estimation
of precision matrix, various penalties are imposed on the entries of precision
matrix (the partial correlation coefficients) to form the networks changing with
time (e.g., see Ahmed & Xing, 2009; Kolar et al., 2010; Zhou et al., 2010; Lu
et al., 2017; Hallac et al., 2017; Yang & Peng, 2018, and among others). For the
nonparametric covariance estimation, we refer to these existing works (e.g., see
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Yin et al., 2010; Chen & Leng, 2016)

The second kind of approach uses the factor model to estimate the covari-
ance matrix (e.g., Chamberlain & Rothschild, 1983). Fan et al. (2013) focused
on the static factor model and proposed large covariance estimation by thresh-
olding principal orthogonal complements. Recently, Wang et al. (2020) proposed
a nonparametric estimation of large covariance matrices which employed kernel
smooth techniques to estimate the covariance matrix functions of both indepen-
dent variables and noises under the framework proposed by Fan et al. (2013).

For the above two kinds of approaches, bandwidth selection plays an impor-
tant role in covariance matrix estimation. However, the above models of non-
parametric covariance matrix function did not clearly clarify the effect of sparsity
on the bandwidth selection. In addition, to satisfy the positive definiteness (Yin
et al., 2010; Chen & Leng, 2016; Guo et al., 2017), only one bandwidth is adopted
in the procedure of covariance function estimation. This might be inappropriate
because it is far-fetched to let the entries of covariance matrix share one common
bandwidth. For example, when the covariance matrix function is sparse, zero
entries have smoothness different from the non-zero entries.

Hence, compared to the challenges of covariance matrix estimation mentioned
above, the sparsity effect on the estimation of covariance matrix function is also
a challenge in nonparametric settings.

1.1 Nonparametric Covariance Model

To address the estimation of covariance matrix function under low-dimensional
settings, Yin et al. (2010) proposed a general nonparametric covariance matrix
estimation framework. The authors not only discussed the sampling properties of
nonparametric covariance model (NCM) but also obtained the asymptotic nor-
mality of NCM. However, similar to the discussion in Fan et al. (2013), NCM
also suffers from a curse of dimensionality. For example, in asset portfolio risk
analysis, modelling market-dependent co-volatility of p assets by use of historical
return data over n consecutive months involves estimating p(p + 1)/2 nonpara-
metric curves (Fama & French, 2004).

To extend the NCM to high-dimensional settings, Chen & Leng (2016) pro-
posed the so-called dynamic covariance model (DCM). One advantage of DCM
framework is the proposed subset-y-variables cross-validation procedure (Chen &
Leng, 2016, p. 1200) which can eliminate the influence of high dimensionality
in the kernel estimation of covariance matrix function. They also developed a
uniform consistency theory of DCM in high-dimensional setting.

To satisfy the positive definiteness, Yin et al. (2010) and Chen & Leng (2016)
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forced the entries of the covariance matrix to share a common bandwidth. How-
ever, it sacrifices the smoothness variability of entries. In more general case, the
smoothness of covariance matrix entries could be different, which means that
multiple bandwidths should be involved in the estimation of covariance matrix.
At the same time, the desirable positive definite property should also be satis-
fied. Hence, it is a challenge to develop a framework that involves the multiple
bandwidths and can satisfy the positive definiteness simultaneously.

The last challenge is the sparsity effect on covariance matrix function. The
scientific researchers usually impose sparsity assumptions on the covariance ma-
trix to ensure the consistency of covariance matrix with low-rank structure (Shen
& Huang, 2008; Amini & Wainwright, 2008; Johnstone & Lu, 2009; Fan et al.,
2013, and among others). Similar to the covariance matrix estimation in high-
dimensional settings, we also impose the sparsity assumption on the covariance
matrix function. Throughout this thesis, we assume the covariance matrix func-
tion is sparse and the locations of zero entries in covariance matrix function are
not dependent on the covariate.

We notice that Chen & Leng (2016) employed the threshold approach of
covariance regularization (Bickel & Levina, 2008b) to make the covariance matrix
estimator consistent under the sparsity assumption in high-dimensional regime.
However, based on the framework of DCM, there is no discussion about the effect
of sparsity on the bandwidth selection in the cross validation step. To achieve the
sparsity, they used the threshold approach which immediately follows the cross
validation step. In fact, the sparsity has a significant effect on the bandwidth
selection. For example, if the sparsity of covariance matrix function is very high,
say 95%, then the zero entries will dominate the bandwidth selection and let
the bandwidth tend to infinity in cross validation step, see the pilot study in
Section 3.2.4. Therefore, the effect of sparsity on covariance matrix function
exists from the beginning of estimation rather than after the cross validation
step.

Another goal of this research is to establish a novel estimation framework of
covariance matrix function considering the sparsity effect from commence. It is
not a simple adjustment of the estimation steps in DCM’s framework. Actually,
we have developed a novel framework to address the sparsity effect from the point
view of the Divide-and-Combine approach.

The methods for solving the sparsity effect, tackling the conflict between
positive definiteness and multiple bandwidths consist of the first task of this
research. The second task that this research concentrates on in nonparametric
high-dimensional settings is the change-point detection in time series segments.
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1.2 Change-point Detection in Time Series
Segments

In sports science, one type of time series segments can be described as follows:
The time series consists of data from a series of consecutive experiments, each
experiment corresponds to a different pattern, condition or category. Between
two experiment records, there exists one pause designed by the researcher, see
Figure 1.1. Figure 1.1 contains 659977 observations of muscle contractions1. Each

Figure 1.1: The Data of Muscle Contractions

contraction lasts six seconds, then the tester has a short break (four seconds).
After the rest, another contraction starts. Sports scientists usually call it as the
intermittent isometric experiment (Pethick et al., 2016).

This type of signal is widely recorded in neurological field (Burioka et al.,
2005), heart rate analysis (Acharya U et al., 2004) and sports science (Forrest
et al., 2014). The signal usually contains the information of various patterns or
models. For instance, in Magnetoencephalography (MEG) or Electroencephalo-
gram (EEG) experiments, neurologically healthy subjects respond differently in
terms of EEG and MEG signal for different stimuli (faces v.s. scrambled faces, or
familiar faces v.s. unfamiliar faces, see Wakeman & Henson, 2015); In cardiology,
the pattern of heart rate varies along the states of human: sleeping, sitting, walk-
ing, jogging or running, see Acharya U. et al. (2005), Burioka et al. (2005), Shi
et al. (2017) and among others; In sports science, the energy offered by Adenosine

1This dataset is offered by Dr. Mark Burnley and Dr. Samantha Winter, School of Sport
and Exercise Sciences, University of Kent.
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triphosphate (ATP) will gradually deduce along the time, the torque shows dif-
ferent models, see Figures 5.2(a) and 5.3(a). Scientists have a great interested in
detecting the change-points of time series segments to help scientists to identify
the patterns of brain activity, the heart disease or improve the performance of
athlete.

Throughout this research, the terminology change-point refers to the “change-
point” of time series segments rather than the “change-point” of a time series.
The usual change-points are the break points within one piece of time series,
see Killick et al. (2012), Fryzlewicz (2014), and Fryzlewicz (2020). However, the
change-points in this thesis are the break points among the time series segments.
For example, suppose we have extracted 55 time series segments from Figure 1.1.
Sports scientists want to know the time of muscle fatigue occurrence. In this
thesis, the time of muscle fatigue occurrence is called the change-point of time
series segments. It is not the usual change-points within time series (Killick et al.,
2012; Fryzlewicz, 2014; Fryzlewicz, 2020).

The natural thoughts of this type of change-point detection is to find an ap-
propriate statistic to compress each segment of time series into a scalar (score).
This statistic should preferably have the following two properties: transformation
invariant (Kullback & Leibler, 1951; Ihara, 1993) and background-noise-free (see,
Propositions 5.1, 5.4 and 5.5). Then based on the observed scores of segments, one
can use CUSUM (Page, 1954) or multiple change-points detection approach (Kil-
lick et al., 2012) to find the change-points. A toy example in Section 5.1 shows
that neither the mean nor the variance of time series are suitable as the statistic.
Hence, the key goal is to find an appropriate statistic owning the above properties.
Furthermore, we also need to discuss the merits of this statistic under the sta-
tionary ARMA process and nonparametric scenarios in high-dimensional settings.
For the ARMA(p,q) process, the high-dimensionality in time series here means
that the p and q are infinite. For nonparametric settings, the high-dimensionality
in time series here means that the lag order m could be arbitrary large with an
upper bound.

Finally, this thesis consists of three novel frameworks. The first two frame-
works are estimations for high-dimensional nonparametric covariance models.
The third framework is the change-point detection in time series segments under
ARMA(p,q) and nonparametric settings. Next, we will discuss the challenges we
encountered in high-dimensional context.
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1.3 Challenges in High-dimensional Context

Throughout the full thesis, we have encountered three challenges in high-
dimensional context: sparsity effect, nonparametric correlation estimation with
constraint and theory development.

1.3.1 Sparsity Effect

Sparsity has a significant effect on the bandwidth selection, see Section 3.2.4.
The selected bandwidth of a very sparse covariance matrix could be far away from
the true bandwidth, sometimes it will go to infinity. In this case, the errors of
nonzero entries generated by the wrong bandwidth will become larger and larger.
In low-dimensional setting, Yin et al. (2010) suggested using one single bandwidth
for the entries of covariance. However, in high-dimensional settings with sparsity,
the conflicts among sparsity, single bandwidth and positive definite property seem
to be becoming more and more irreconcilable. Avoiding these conflicts is a big
challenge in our research.

In fact, there exist two possible technical methods. Method 1 refers to the
usage of multiple bandwidths in nonparametric covariance. There are two aspects
worthy of attention, one is how to divide the elements of covariance and how many
groups (or bandwidths) should we have? Another is how to keep positive definite
covariance when multiple bandwidths are adopted. We will introduce a novel
framework to address these issues in Chapter 3.

Method 2 needs to detect the zero entries in advance and delete them, then
optimize the cross validation function only with respect to the nonzero entries. In
this way, zero entries has less effect on the bandwidth selection. By contrast, the
framework of Chen & Leng (2016) produces a sparse estimator via thresholding
the kernel smoothed covariance after bandwidth selection step. In fact, zero
entries still affect the bandwidth selection. Therefore, the swap of zero entries
detection step and bandwidth selection step is the key of Method 2. It is also a
main challenge to detect the zero entries. Moreover, Method 2 still concerns the
positive definite property of covariance matrix. The details of Method 2 can be
found in Chapter 4. Both Method 1 and Method 2 can reduce the sparsity effect
on nonparametric covariance matrix in the high-dimensional settings.

1.3.2 Nonparametric Correlation Matrix Estimation

In Method 2, we divide the estimation procedure of nonparametric correlation
matrix into three steps: estimation of diagonal entries, detection of zero entries
and estimation of off-diagonal non-zero entries.
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Within the estimation of off-diagonal non-zero entries, the nonparametric
correlation estimators without constraints could be out of the range [−1, 1], see
Figure 4.1. This will bring in extra bias in terms of Frobenius norm loss. If
the residuals are from Gaussian probability density function (PDF), we have
developed a novel method to estimate the correlation coefficients with constraint
via solving the nonparametric cubic equations. Furthermore, for each entry, each
given bandwidth and each given explanatory variable without the i-th observation
in cross validation function (4.16), we need to solve a cubic equation (4.15) and
a nonlinear equation (4.13). In high-dimensional settings, the computational
complexity increase much faster than the variable dimension. Therefore, it is a
challenge to improve the algorithm to speed up the numerical computation of
bandwidth selection via criterion (4.16).

1.3.3 Theory Development

The uniform consistency theory development in high-dimensional context is
the biggest challenge in this research. For i.i.d. case, Yin et al. (2010) proved the
uniform consistency of covariance matrix function in low-dimensional settings.
Furthermore, Chen & Leng (2016) extended the uniform consistency theory to
high-dimensional settings. However, for non i.i.d. case, the development of uni-
form consistency theory of covariance matrix function is difficult under sparsity
assumption. For the factorization estimation of NCM, we hope to build a uni-
form consistency theory not only for the independent error terms but also for the
dependent ones in high-dimensional context, see Section 3.4.

As for the change-point detection in time series segments, it is easy to de-
velop the theory of relative entropy for time series in ARMA(p,q) process, see
Section 5.2.1. However, it needs to develop a relative entropy theory of time series
for m-consecutive lags in high-dimensional context even though Hong & White
(2005) had obtained an asymptotic distribution of relative entropy for pairwise
variables. Furthermore, we have also proposed a criterion to determine the lag
order m, and developed a corresponding theory for this criterion, see Section 5.2
and Section 5.3 respectively. Next, we briefly clarify the main contributions of
the proposed frameworks in this thesis, then introduce the organization of the
thesis.

1.4 Contributions

There are three contributions in this thesis: Factorized NCM, Divide-and-
Combine NCM and the nonparametric relative entropy (RlEn) for the change-
point detection. More specifically, two major features of factorized NCM esti-
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mation are factorization of covariance matrix by a set of band matrices (3.12)
and the criterion of cross-validation without the computation of precision matrix
respectively. The former can reduce the effect of sparsity aforementioned in the
previous section while the latter can speed up the computation. Most impor-
tantly, we have developed a consistency theory of NCM estimator for dependent
samples.

In addition to the literal meaning of Divide-and-Combine NCM estimation,
there are also two extra contributions to the nonparametric covariance model.
One contribution is that the detection of zero entries occurs earlier than the
selection of bandwidth. In this case, we can ignore the zero entries to reduce
their effect on the bandwidth selection of off-diagonal nonzero entries. The other
contribution is to propose a new nonparametric estimation approach of correlation
coefficient with constraint, for instance, see Figure 4.1. It can guarantee that the
correlation coefficient estimators exactly lie within the interval [−1, 1]. Next, we
discuss the contributions of nonparametric relative entropy.

Firstly, we investigate the properties of nonparametric relative entropy when
the time series is stationary. It concludes that the relative entropy has two proper-
ties: transformation invariant and background-noise-free for ARMA(p,q) process.
Furthermore, the relative entropy remains the same value if m ≥ p for AR(p) or
m ≥ q + 1 for MA(q) with finite p and q. Secondly, in nonparametric settings,
we not only propose a nonparametric relative entropy statistic for time series,
but also develop a consistency theory of nonparametric relative entropy for i.i.d.
samples. The limiting distribution of RlEn is Gaussian under the appropriate as-
sumptions. Furthermore, we also construct a convergence theory of the Bayesian
information criterion (BIC) for the lag order selection.

1.5 Organization of The Thesis

The statistical models we proposed in high-dimensional nonparametric set-
tings constitute the following chapters in detail.

In Chapter 2, we briefly review the basic nonparametric models, bandwidth
selection approaches as well as the complexity measures for time series in lit-
erature. These reviews and background are the cornerstones of the following
chapters.

In Chapter 3, we have dwelt on the establishing procedures of factorized
estimation of high nonparametric covariance models. This framework typically
consists of five steps: standardization, factorization, bandwidth selection, thresh-
olding and shrinkage.

In Chapter 4, we have proposed another framework to address the influence
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of sparsity on covariance estimators. Inspired by the Divide-and-Conquer algo-
rithm (Cormen, 2009), we employ this similar idea, called Divide-and-Combine,
to reduce the influence of zero entries on the bandwidth selection.

In Chapter 5, we have discussed a new relative entropy for time series. This
type of relative entropy is a two-stage procedure including lag order selection and
relative entropy estimation.

Finally, Chapter 6 contains the conclusions and future works of this thesis. It
not only highlights the conditions or constraints of the models we proposed in this
thesis, but also suggests some potential extensions of our models in the future.
The tables, figures and main proofs of Chapter 3, Chapter 4 and Chapter 5 are
postponed to Appendix A, Appendix B and Appendix C respectively.



Chapter 2

Literature Review and
Background

In this chapter, we give a literature overview of nonparametric covariance
model and relative entropy. It is hard to review all the fields of Nonparametric
Statistics since it is a broad research area. So, we limit our literature review to the
areas of nonparametric covariance model, relative entropy, bandwidth selection
and the relevant statistical methods used in this thesis.

2.1 Nonparametric Mean and Covariance
Models

2.1.1 Nonparametric Mean Regression Model

To introduce the basic ideas of Nadaraya-Watson and local polynomial kernel
estimators, we start from the nonparametric homoscedastic regression model:

yi = m(xi) + εi, i = 1, . . . , n, (2.1)

where {(xi, yi), i = 1, . . . , n} is a sample of random variable (X,Y ) satisfying
Model (2.1). εi, i = 1, . . . , n are independent and identity distribution (i.i.d.)
samples drawn from a distribution with mean zero and constant variance. εi and
xi, i = 1, . . . , n are mutually independent. The mean function m(·) is a smooth
unknown function of X. The support of X could be R or an interval.

Let K(u) be a kernel function and Kh(u) = h−1K(u/h) represent its scaled
kernel function where h ∈ R+ is called the bandwidth or smoothing param-
eter. Nadaraya (1964) and Watson (1964) proposed the following estimator of

10
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mean function, namely,

m̂(xi) =
n∑

j=1

Kh(xj − xi)yi∑n
s=1Kh(xs − xi)

=
n∑

j=1

wijyi. (2.2)

In literature, people usually call (2.2) as Nadaraya-Watson type estimator.

Another important and extensively-used estimation of mean function in statis-
tics is the local polynomial method, for example, see Section 5.2 in Wand & Jones
(1995) or Chapter 3 in Fan & Gijbels (1996). We will briefly review the frame-
work of local polynomial kernel estimator with degree p. Suppose m(·) has the
p-th derivative at the given point x0. For any x in the neighbourhood of x0, by
the Taylor expansion, the mean function m(x) can be approximated by

m(x0) +m′(x0)(x− x0) +
m′′(x0)

2!
(x− x0)2 + · · ·+

m(p)(x0)

p!
(x− x0)p.

Therefore, one can fit the above polynomial with respect to x−x0 via minimizing∑n
i=1 [yi −

∑p
s=0 βs(xi − x0)

s]
2
Kh(xi − x0). Let the design matrix be

Xp,x0 =


1 x1 − x0 · · · (x1 − x0)p

... ... . . . ...

1 xn − x0 · · · (xn − x0)p

 .

Denote y = (y1, . . . , yn)
T , β = (β0, . . . , βp)

T , and Wh,x0 is an n × n diagonal
matrix with Kh(xi − x0), i = 1, . . . , n on the main diagonal. The weighted least
square (WLS) estimator of

[
m(x0),m

′(x0), . . . ,m
(p)(x0)/(p!)

]T is

β̂ =
(
XT

p,x0
Wh,x0Xp,x0

)−1XT
p,x0

Wh,x0y.

In practice, of great interest is the estimator of m(x0). Let e1 be a vector in
which the first entry is 1 and the other entries are zeros, then we have

m̂(x0) = eT1
(
XT

p,x0
Wh,x0Xp,x0

)−1XT
p,x0

Wh,x0y = eT1 Sp,h,x0y, (2.3)

where Sp,h,x0 is called the local polynomial smoother matrix. Especially, we note
that estimator (2.3) degenerates to the Nadaraya-Watson estimator when p = 0.
If p = 1, we call (2.3) a local linear kernel estimator, a simple form of eT1 Sp,h,x0

can be easily obtained, e.g., the Equation (5.4) in Wand & Jones (1995).

Except for the kernel-based methods mentioned above, there are many other
nonparametric methods for mean function estimation such as wavelet thresh-
olding (Donoho & Johnstone, 1994; Donoho, 1994; Donoho & Johnstone, 1995;
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Donoho, 1995; Donoho et al., 1995; Donoho & Johnstone, 1998), spline smooth-
ing (Kooperberg & Stone, 1991; Green & Silverman, 1994; Kooperberg et al.,
1995a; Kooperberg et al., 1995b; Nychka, 1995), additive model and generalized
additive model (Friedman & Stuetzle, 1981; Buja et al., 1989; Hastie & Tibshi-
rani, 1999).

Furthermore, there are also massive efficient approaches proposed to solve
some specific issues in literature. For example, these issues include but not limited
to: the optimal bandwidth selection, the boundary correction, the consistency
theories, the combination with other regression models such as generalized linear
regression, time series, multivariate regression, etc. These kernel-based models
can be found in some classical nonparametric textbooks, e.g., Härdle (1990), Fan
& Gijbels (1996), Wasserman (2006), and Li & Racine (2007).

These discussions are beyond the scope of our research because the first part
of this thesis concentrates on the covariance function estimation. Specifically, it is
no doubt that one can apply the local polynomial kernel regression method to the
estimation of variance function. We will put off the review of general approaches
with respect to the variance and covariance function in the following sections.

2.1.2 Nonparametric Variance Model

Hall & Marron (1990), Ruppert et al. (1997), Fan & Yao (1998), Yu & Jones
(2004) and the references therein developed the univariate nonparametric variance
model from different perspectives. Suppose that (X,Y ) are a pair of random
variables, {(x1, y1), . . . , (xn, yn)} represent observations from model (2.4),

yi = m(xi) + εi, var(εi|xi) = v(xi), i = 1, . . . , n, (2.4)

where εi, i = 1, . . . , n are independent random variables with E(εi) = 0 and
E(ε4i |xi) <∞. Suppose both m(·) and v(·) are unknown smooth nonlinear func-
tions of variable X.

Next, we discuss the classical estimation methods of variance function under
the univariate scenario. In fact, if the mean function estimator (either parametric
or nonparametric) can be absorbed by yi, then Model (2.4) degenerates to

yi = εi, var(εi|xi) = v(xi), i = 1, . . . , n, (2.5)

where in this case E(yi|xi) = 0. Model (2.5) represents a centralization of
Model (2.4). Within the scope of this research, it is convenient to focus on
the estimation of variance function regardless of the mean function temporarily.
To keep the completeness, we still consider the mean function in the rest of this
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chapter. But keeping in mind, even an explicit m(·) estimator is specified, it can
be replaced by other existing nonparametric mean estimator in literature.

As for the variance function v(·), the current estimation approaches can be di-
vided into two categories according to its homoscedasticity or heteroscedasticity.
The rest of Section 2.1.2 introduces three classical variance function estimations.
The first framework is based on the Nadaraya-Watson kernel under homoscedas-
ticity assumption. The rest two frameworks address the boundary correction and
positive definite problems under heteroscedasticity assumption respectively.

2.1.2.1 Nadaraya-Watson Estimators

In nonparametric homoscedastic regression, there exist many methodologies
in time series context, for example, see Rice (1984), Gasser et al. (1986), Hall
& Marron (1990) and the references therein. Among these methodologies, we
take the variance function estimation (Hall & Carroll, 1989) as an example to
illustrate the framework in homoscedastic settings.

Suppose Model (2.4) holds with homoscedastic variance, i.e., v(x1) = · · · =
v(xn) = σ2. Let K(u) and Kh(u) be the kernel and scaled kernel functions
respectively, h is a bandwidth. For simplicity, the mean function is estimated by
the Nadaraya-Watson type of estimator in (2.2).

As mentioned above, one can use other types of mean function smoothers
here, or just assume m(·) is zero by following the suggestion in Hall & Carroll
(1989). Nevertheless, the kernel estimators of errors are ε̂i = yi − m̂(xi), i =

1, . . . , n. The effective degrees of freedom (EDF) for errors (e.g., the defini-
tion in Hastie & Tibshirani, 1999, p. 54) has a simple form: nd = 2

∑n
i=1wii −∑n

i=1

∑n
j=1wij. Therefore, for the nonparametric homoscedastic regression, the

Nadaraya-Watson type estimator of σ2 is

σ̂2 =
1

n− nd

∑n

i=1
ε̂2i . (2.6)

As homoscedasticity, the error items in (2.6) share one common weight 1/(n−nd).
It is straightforward to extend estimator (2.6) to the heteroscedastic settings.
Suppose that K∗(x) and K∗

h∗(x) represent another kernel and scaled kernel func-
tions respectively, h∗ is another bandwidth. v(·) is an unknown smooth function
of xi. For any given x0 in the support of X, the variance estimator is

v(x0) =
∑n

i=1
w∗

i ε̂
2
i , (2.7)

where w∗
i = K∗

h∗(xi − x0)/
∑n

i=1K
∗
h∗(xi − x0). However, estimator (2.7) will

encounter the boundary effect problem when x0 is close to the boundaries of the
support of X. There is a review on the boundary correction, see a list of methods
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in Karunamuni & Alberts (2005). Among these existing methods, local linear
smoother attracts many attentions due to its automatic correction (Cheng et
al., 1997) and asymptotic minimax efficiency properties (Fan et al., 1997) in the
context of nonparametric regression. A full and systematic introduction of local
polynomial regression and its applications can be found in the textbooks (e.g.,
Fan & Gijbels, 1996; or Wand & Jones, 1995).

2.1.2.2 Local Polynomial Estimators

Ruppert et al. (1997) applied the local p-th order polynomial smoother to
the estimation of variance function (e.g., Härdle & Tsybakov, 1997). Suppose
Model (2.4) holds and h1, h2 are two bandwidths distinguishing from h and h∗.
We notice that Ruppert et al. (1997) applied the local polynomial regression both
to m(·) and v(·).

Given h1 and the polynomial degree p1, by estimator (2.3), we have

m̂(x0) = eT1
(
XT

p1,x0
Wh1,x0Xp1,x0

)−1XT
p1,x0

Wh1,x0y = eT1 Sp1,h1,x0y, (2.8)

where Xp1,x0 ,Wh1,x0 , Sp1,h1,x0 are the copies of Xp,x0 ,Wh,x0 , Sp,h,x0 except that
(p, h) is replaced by (p1, h1). When x0 in (2.8) takes the values of {x1, . . . , xn},
the estimator of ε = (ε1, . . . , εn)

T can be written as ε̂ = (Ip − Sp1,h1) y, where the
i-th row of Sp1,h1 is eT1 Sp1,h1,xi

and Ip is an identity matrix.

The contribution of Ruppert et al. (1997) is the local polynomial fit of v(·)
with respect to the squared residuals ε̂2. Given p2, h2, x0, they proposed the
following estimator

v̂(x0) = v̂(x0; p1, h1, p2, h2) =
eT1 Sp2,h2,x0 ε̂

2

1 + eT1 Sp2,h2,x0∆
, (2.9)

where ∆ = diag
(
Sp1,h1ST

p1,h1
− 2Sp1,h1

)
represents an EDF vector. The denom-

inator of (2.9) originates from the variance estimator in homoscedastic linear
regression to reduce the bias. For example, in estimator (2.6),

∑n
i=1 ε̂

2
i is divided

by n− nd rather than n which makes (2.6) unbiased. The term 1 + eT1 Sp2,h2,x0∆

plays the similar role here. In nonparametric heteroscedastic regression, esti-
mator (2.9) is biased even if it is adjusted by 1 + eT1 Sp2,h2,x0∆, see Theorem 1
in Ruppert et al. (1997).

It needs to point out that one can use other estimators of m(·) as long as
the terms ε̂2 and ∆ in (2.9) change correspondingly. Another aspect needed to
emphasize here is the equivalent kernel, see its definition and details in Section
3.2 in Fan & Gijbels (1996). The equivalent kernel eT1 Sp2,h2,x0 might be negative
such that v̂(x0) is negative which violates the constraint v(·) ≥ 0. For instance,
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let p2 = 0, 1, Figure 2.1 clearly shows that the equivalent kernel of local linear
(p2 = 1) could be negative, the variance estimator at x86 = 0.831 is -0.005. In the
following paragraph, we will review the methods that could solve this problem.
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(a) p2 = 0
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(b) p2 = 1
Note: this simulation is based on Model (2.5) with the following parameter
settings: n = 100, h = 0.01, v(xi) = 1 − x2

i , xi is randomly generated from
U(0, 1). yi, i = 1, . . . , n are randomly drawn from N(0, v(xi)). The two
figures show the equivalent kernels of local constant and linear regression in
cross validation step.

Figure 2.1: Equivalent Kernel Comparison

2.1.2.3 Maximum Locally Likelihood Estimators

The maximum locally likelihood estimators of variance functions (e.g., Fan &
Yao, 1998; Yu & Jones, 2004) not only address the problem of negative variance,
but also have the fully regression-adaptive merit, i.e., without knowing m(·), esti-
mator v(·) performs as well as the variance estimator whence m(·) are known (Fan
& Yao, 1998, p. 3).

The framework of maximum locally likelihood estimators requires that the
distribution of εi is known. Following Fan & Yao (1998) and Yu & Jones (2004),
we demonstrate this framework assuming εi’s are independent and sampled ran-
domly from a normal distribution. One can easily extend it to other error distri-
butions.

The log-likelihood function can be expressed as

− 1

2

n∑
i=1

[
ε̂2i
v(xi)

+ log (v(xi))
]
. (2.10)

Given x0, Fan & Yao (1998) replaced v(xi) in (2.10) with its linear approximation
α(x0) + β(x0)(xi − x0) at x0, and proposed the following local log-likelihood
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function

L(x0, h) = −
1

2

n∑
i=1

[
ε̂2i

α(x0) + β(x0)(xi − x0)

+ log (α(x0) + β(x0)(xi − x0))
]
Kh(xi − x0).

(2.11)

However, in (2.11), it needs special attention on the estimators of α(x0), β(x0)
such that the logarithm item log (α(x0) + β(x0)(xi − x0)) is well-defined. In con-
trast, Yu & Jones (2004) recommended replacing v(xi) with its log-linear expan-
sion exp (α1(x0) + β1(x0)(xi − x0)) which yields

L(x0, h) = −
1

2

n∑
i=1

[
ε̂2i

exp (α1(x0) + β1(x0)(xi − x0))

+ α1(x0) + β1(x0)(xi − x0)
]
Kh(xi − x0).

(2.12)

The advantage of (2.12) is that no extra constraints on α1(x0), β1(x0) are needed.
The variance estimator at x0 is v̂(x0) = exp(α̂1(x0)). It is worth pointing out
that there exist substantial approaches aforementioned to obtain ε̂i regardless
of whether m(·) is known or unknown. In Yu & Jones (2004), (2.12) is called
the local log-linear estimator. We adopt the log-linear estimation of variance
functions in Chapter 4 to evaluate the diagonal entries of covariance matrix.

So far, we have briefly reviewed the key works on variance function estimation
under the univariate scenarios. These basic models and approaches are adopted
and modified appropriately in Chapter 3 and Chapter 4 depending on the context
of high-dimensional settings. Next, we discuss the existing models on estimation
of covariance functions in literature.

2.1.3 Nonparametric Covariance Model

Yin et al. (2010) proposed the nonparametric covariance model under the low-
dimensional settings which is the foundation of our research. Furthermore, Chen
& Leng (2016) developed a novel dynamic covariance model to overcome the curse
of dimensionality. Next, we provide a brief overview of these two models.

Let Y = (Y1, . . . , Yp)
T ∈ Rp be a p-dimensional random vector and U ∈ R be

an independent random variable. Suppose that (yi, ui)
n
i=1 with yi = (yi1, . . . , yip)

T

are random observations from the population (Y, U), satisfying the equations
yi = µ(ui) + Σ(ui)

1/2εi, i = 1, . . . , n, where µ(ui) = (µ1(ui), . . . , µp(ui))
T and

given (ui)
n
i=1, εi’s are independent with zero means and unity covariance matrices

(i.e., E[εi|ui] = 0p, cov(εi|ui) = Ip). Let K(u) and Kh(u) = h−1K(u/h) be
the kernel function and its scaled kernel function respectively with bandwidth
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h > 0. Yin et al. (2010) considered estimators µ̂(u) =
∑n

i=1wih∗(u)yi and

Σ̂(u) =
∑n

i=1
wih(u)(yi − µ̂(ui))(yi − µ̂(ui))

T , (2.13)

where wih(u) = Kh(ui − u)/
∑n

k=1Kh(uk − u), h∗ and h are bandwidths of mean
and covariance matrix functions respectively. For given p, they proved that Σ̂(u)
is consistent if the convergence rate is of order

√
1/(nh) +O(h2).

However, when p0 = p(p+1)/2 is close to or larger than n, the kernel covari-
ance estimator proposed by Yin et al. (2010) can be degenerate or ill-conditioned
with a high condition number. In existing researches for regularization, estimated
covariance is usually done by banding, thresholding, or truncating the number of
the leading eigenvalues (e.g., Bickel & Levina, 2008a; Cai & Liu, 2011; Fan et al.,
2013). Chen & Leng (2016) proposed a method: Dynamic Covariance Model to
regularize the kernel covariance model by thresholding covariance entries.

In details, Chen & Leng (2016) used the mean function estimator µ̂(u) and
a different covariance function estimator, namely,

Σ̂1(u) =
∑n

i=1
wih(u)yiyT

i − µ̂(u)µ̂(u)T . (2.14)

When p is of order O(exp(n4/5)), they showed that both Σ̂(u) and Σ̂1(u) are
consistent as n tends to infinity. Yin et al. (2010) used the following leave-one-
out cross validation criterion

CVΣ(h) = n−1
∑n

i=1

{
[yi − µ̂(ui)]

T Σ̂−1
(−i)(ui) [yi − µ̂(ui)]

− log
(∣∣∣Σ̂−1

(−i)(ui)
∣∣∣)} , (2.15)

in bandwidth selection, where Σ̂(−i)(ui) is the estimator computed according to
Σ̂(u) or Σ̂1(u) but without the ith observation. So when p0 � n, it is impossible
to estimate the precision matrix (e.g., inverse matrix) of covariance matrix accu-
rately in equation (2.15). To overcome the effect of degeneration, Chen & Leng
(2016) proposed a subset-y-variables cross-validation procedure.

In particular, they randomly choose k(k < n) entries (scalar variables) from
variable vector Y = (Y1, . . . , Yp)

T , denoted as Ys = (Yj1 , . . . , Yjk)
T and repeat

this N times. Denote these N subsets index as s1, . . . , sN , then the cross valida-
tion (2.15) can be expressed as

CV (h) =
1

N

N∑
j=1

{
1

n

n∑
i=1

[{
yi,sj − µ̂sj(ui)

}T
Σ̂−1

sj(−i)(ui)
{

yi,sj − µ̂sj(ui)
}

+ log
(∣∣∣Σ̂sj(−i)(ui)

∣∣∣) ]}, (2.16)



Chapter 2. Literature Review and Background 18

where Σ̂sj(−i)(·) is obtained by leaving out the i-th observation using responses
yi,sj = (yi,sj1 , . . . , yi,sjk )

T with the bandwidth h∗ and

µ̂sj(u) =
{∑n

i=1
Kh∗(ui − u)yi,sj

}{∑n

i=1
Kh∗(ui − u)

}−1

.

In essence, they used the subset-y-variables to avoid the case of p0 > n, however
this method may omit the correlation among the variables in (Y1, . . . , Yp)

T . Be-
fore turning to the next section, we need to remind that there also exist Bayes
nonparametric covariance models, for example, see Fox & Dunson (2015) and the
references therein. The following section is related to the bandwidth selection
methods we used in the context of high-dimension.

2.2 Bandwidth Selections

Both models of Yin et al. (2010) and Chen & Leng (2016) require the selection
of the smoothing parameter h. Over the last 40 years, many bandwidth selection
methods have been proposed under different circumstances.

For univariate regressor and single response case, there are four kinds of ap-
proaches to deal with bandwidth selection: ASE-based, Cross-validation-based,
plug-in and bootstrap method. To the best of our knowledge, Rice (1984) firstly
introduced the Average Squared Error (ASE) criterion. The cross-validation (CV)
methods can be traced back to Clark (1977). The third refers to the plug-in
approach. This approach minimizes the asymptotic mean integrated squared
error and the unknown parts are usually replaced by the pilot estimators, for
instance, Ruppert et al. (1995). Finally, there are also various methods based on
bootstrap techniques including but not limited to Cao-abad & González-Manteiga
(1993), González Manteiga et al. (2004) and references therein. Furthermore,
a full overview of bandwidth selection methods can be found in many text-
books (e.g., see Chapter 5 in Härdle, 1990; Chapter 3 in Wand & Jones, 1995;
Chapter 4 in Fan & Gijbels, 1996; Jones et al., 1996). Besides, for the bandwidth
selection in nonparametric time series, see Sections 5.4 and 6.3.5 in Fan & Yao
(2003). For multiple regressors and single response case, the above 4 methods
are also applicable. A full overview of bandwidth selection for multivariate kernel
can be found from Chapter 3 in Chacón et al. (2018).

However, the covariance matrix of the response vector in nonparametric co-
variance model is a function of an explanatory variable. The bandwidth selection
for nonparametric covariance matrix is not equivalent to that for univariate kernel
regressor and single response case. If one applies the univariate kernel bandwidth
selection methods to each element of covariance matrix and finally combine the
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entries’ estimators to form the covariance matrix estimator, then the covariance
matrix could not be always positive definite, see Remark 1 in Yin et al. (2010).
Figure 2.2 shows the comparison results of plug-in (PI) and cross validation (CV)
methods in terms of Frobenius norm loss for the covariance model under differ-
ent sparsities. Figure 2.2(a) shows the simulation results using cross validation

(a) Cross Validation (b) Plug-in

Figure 2.2: Bandwidth Selection Comparison Between PI and CV for Different Sparsity

method in Section 3.2.4. In contrast, for the same simulation as in Figure 2.2(a),
we apply plug-in method to entries of covariance matrix function to obtain the
entry-wise estimators and combine them to form the estimator of covariance ma-
trix (without considering the positive definiteness). Figure 2.2(b) shows that the
sparsity has tiny effect on the Frobenius norm loss if the plug-in bandwidth se-
lection is adopted. Furthermore, the Frobenius norm losses of CV are below 0.09
while the Frobenius norm losses of plug-in are around 0.21.

In this case, the bandwidth selected by CV performs better than that selected
by PI. In fact, we do not suggest using the entry-wise estimation because of the
following two reasons: (1) the entry-wise estimation is not always positive definite
even in low-dimensional settings; (2) the computational complexity will increase
at a faster rate than the values of p, for example, see the CPU-time consumption
study in Figure 2.3.

Figure 2.3 shows that the CPU-time consumption increases at a faster rate
compared to the “Direct” method when p increases. Furthermore, in this case
there is no evidence that the entry-wisely estimation could be better than the
“Direct” method in terms of Frobenius norm loss.

In high-dimensional settings, the covariance matrix estimator is not always
positive definite even all the entries share one common bandwidth, see the dis-
cussions in Chen & Leng (2016). We notice that the cross-validation method
at least can guarantee the positive definiteness in low-dimensional settings (Yin
et al., 2010). Following their proposal and based on the results in Figure 2.2, we
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(a) CPU time (b) Frobenius norm loss

Note: “Direct” method represents that the bandwidth is chosen by equa-
tion (2.18). “Entry-wise” method represents that the bandwidth is chosen
entry-wisely. We set p = 5, 10, 15, 20, 25, n = 100, M = 30. The simulation
is based on the Setting 1 in Section 3.5.2.

Figure 2.3: The CPU-time Consumptions of Two CV Methods

employ the cross validation to choose the bandwidth in high-dimensional settings
throughout this thesis.

Recall the mean function estimator (2.2) at xi, the leave-one-out cross vali-
dation criterion can be defined as

CV (h) =
1

n

n∑
i=1

(yi − m̂−i(xi))
2, (2.17)

where m̂−i(xi) represents the mean function estimator without the i-th obser-
vation. By minimizing (2.17), one can obtain the optimal bandwidth for m(·).
Similarly, the criterion of bandwidth selection for nonparametric covariance can
be written as the form of (2.15). This type of criterion is based on the log like-
lihood function which needs to compute the precision matrix Σ̂−1

(−i)(ui). It is a
fact that for a p × p matrix, the computational complexity of inverse matrix is
of order O(p3) in general1. It will be a computational burden when (n, p) are
sufficiently large. To avoid the computation of precision matrix, Biscay et al.
(1997) suggested using the Frobenius norm loss, i.e.,

CVΣ(h) =
1

n

n∑
i=1

∥∥∥Σ̂(−i)(ui)− [yi − µ̂(ui)] [yi − µ̂(ui)]
T
∥∥∥2
F
, (2.18)

as the criterion of bandwidth selection. This research uses the criterion (2.18) to
speed up the bandwidth selection, for example, see the comparison of CPU-time

1To the best of our knowledge, the optimal complexity of inverse matrix is up to
O(p2.373) (Davie & Stothers, 2013). However, algorithm design is beyond the scope of our
research, we will not go further here.
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consumption in Figure 3.1.

As for the bandwidth selection, it needs to highlight here that the entries
of covariance matrix share a single bandwidth to keep it positive definite (see
Remark 1 in Yin et al., 2010, p. 471). The researchers, such as Chen & Leng
(2015), Chen & Leng (2016), Xu et al. (2019), Jiang et al. (2020) adopt the com-
mon bandwidth by default. However, in high-dimensional settings with sparsity
assumption, one single bandwidth could increase the Frobenius norm-based loss
(see the table results in Appendix A). We develop a novel framework using mul-
tiple bandwidths for different entries of covariance matrix at the meanwhile the
positive definite property also holds in theory (see the Factorized NCM in Chap-
ter 3).

In the choice of bandwidth, another aspect that needs attention is the hybrid
mean functions. For instance, suppose the mean functions are composed of linear
functions and nonlinear functions. If one tends to use local linear smoother
(with a common bandwidth) to estimate the mean functions, then it will bring in
extra bias because the bandwidth will go to infinity for the linear functions (see,
Fan & Gijbels, 1996, p.20 and Section 4.2.1). This indicates us to separate
the linear mean functions if the local linear smoother is used. Similarly, if one
uses Nadaraya-Watson smoother, then the constant functions should be identified
as well. For example, in Chapter 4, we employ the generalized likelihood ratio
statistics (Fan et al., 2001) to detect the linear functions.

So far, we have reviewed the basic concepts of nonparametric covariance
model and bandwidth selection in the context of kernel regression. There are
also numerous literature relating to the kernel density estimation (KDE). Due
to the space limitation of the thesis, we will not elaborate on the KDE further.
Next, we discuss the existing complexity measures of times series.

2.3 Complexity Measures of Time Series

In the past few decades, various type of entropies such as Approximate En-
tropy (Pincus, 1991), Sample Entropy (Richman & Moorman, 2000), Multi-scale
Entropy (Costa et al., 2003), Fuzzy Entropy (Chen et al., 2009) and Relative
Entropy (Robinson, 1991; Hong & White, 2005) were proposed to evaluate the
system complexity. Here, we briefly review the fundamental concepts of Approxi-
mate Entropy, Sample Entropy, Multi-scale Entropy, Fuzzy Entropy and Relative
entropy. The topics related to algorithms, parameters determinant and the lim-
iting distribution are also revised later in this section.
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2.3.1 Approximate Entropy

Pincus (1991) proposed approximate entropy to measure the complexity of
time series. To be specific, let X1, . . . , XN be the time series (equally spaced
in time) variables and x1, x2, . . . , xN represent their observations. Define x(m)

i =

[xi, . . . , xi+m−1] ∈ Rm where m is the lag order. For simplicity, let n = N−m+1,
then for each i, 1 ≤ i ≤ n, denote

Cm
i (r) =

# of
{
j : d

(
x(m)
i − x(m)

j

)
≤ r, 1 ≤ j ≤ n

}
n

, (2.19)

where d(x(m)
i − x(m)

j ) is the Chebyshev distance between x(m)
i and x(m)

j , namely,
d(x(m)

i − x(m)
j ) = maxk=1,...,m(|xi+k−1 − xj+k−1|). Furthermore, let Φm(r) =

n−1
∑n

i=1 log(Cm
i (r)). The definition of approximate entropy (ApEn) can be de-

scribed as:
ApEn (m, r,N) = Φm(r)− Φm+1(r). (2.20)

In fact, Definition (2.20) is an approximation form of Eckmann-Ruelle (E-R) en-
tropy, i.e., the average of logarithm of conditional probability that d(x(m+1)

i −
x(m+1)
j ) ≤ r given d(x(m)

i − x(m)
j ) ≤ r, see Pincus (1991). There are three free

parameters: m, r,N , each parameter has an effect on the validity of ApEn. How-
ever, Pincus (1991) did not discuss the choice of these parameters. In Pincus
(1991), the value of r lies in [0.1×SD, 0.2×SD] for m = 2, N = 1000 where SD
is standard deviation of xi.

2.3.2 Sample Entropy

Sample entropy has been proposed to overcome two disadvantages of ApEn:
One disadvantage of ApEn is self-matched, see equation (2.19), where j could
be equal to i. Another disadvantage is that ApEn heavily depends on the data
length N , for more discussions, see Richman & Moorman (2000). To be specific,
let d(x(m)

i −x(m)
j ) be the distance between x(m)

i and x(m)
j , then the sample entropy

(SpEn) is defined as

SpEn(m, r,N) = − log
(∑N−m

i=1 nj ̸=i(m+ 1)∑N−m
i=1 nj ̸=i(m)

)
, (2.21)

where nj ̸=i(m + 1) is the cardinality of {j : d(x(m+1)
i − x(m+1)

j ) ≤ r, j 6= i} while
nj ̸=i(m) is the cardinality of {j : d(x(m)

i − x(m)
j ) ≤ r, j 6= i}. nj ̸=i(m + 1) is

always smaller than or equal to nj ̸=i(m) so that equation (2.21) is well-defined.
In practice, Richman & Moorman (2000) suggested that one can set m = 2 and
r = 0.2SD where SD represents the standard deviation of data x1, . . . , xN .
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2.3.3 Multi-scale Entropy

Based on the sample entropy, Costa et al. (2003) proposed multi-scale entropy
(MsEn) to account for the multiple timescales inherent in time series, i.e., how
the sample entropy changes with different timescale. Given the scale factor τ ,
they first divide the time series into bN/τc windows, then take an average of
the data in each window and obtain so-called coarse-grained time series {y(τ)j },
namely,

y
(τ)
j = τ−1

∑jτ

i=(j−1)τ+1
xi, 1 ≤ j ≤ bN/τc.

Finally, they apply the basic sample entropy algorithm to {y(τ)j } to obtain the
multi-scale entropy. Specially, when τ = 1, it degenerates to the sample entropy.
A real example of multiple entropy can be found in Costa et al. (2005). Further-
more, Ahmed & Mandic (2012) extended the multi-scale entropy from univariate
to multivariate case.

2.3.4 Fuzzy Entropy

Fuzzy entropy (Chen et al., 2009) is an extension of ApEn. The significant
difference between fuzzy entropy and ApEn or SpEn is that cardinality is replaced
by similarity degree, see equations (2.19), (2.21) and (2.22). To be specific, let
x̄(m)
i be the centralization of x(m)

i , i.e., x̄(m)
i = (xi − x̄i(m), . . . , xi+m−1 − x̄i(m)),

where x̄i(m) = 1/m
∑m−1

j=0 xi+j. Let dij(m) be the distance between x̄(m)
i and

x̄(m)
j , i.e.,

dij(m) = d
(

x̄(m)
i − x̄(m)

j

)
. (2.22)

Given q and v, let Dij(m, q, v) denote the fuzzy function2 exp (−(dij(m))q/v),
define

Φm(q, v) =
1

N −m

N−m∑
i=1

(
1

N −m

N−m+1∑
j=1,j ̸=i

Dij(m, q, v)

)
,

and

Φm+1(q, v) =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j=1,j ̸=i

Dij(m, q, v)

)
.

Finally, the fuzzy entropy (FzEn) is defined as

FzEn (m, q, v,N) = logΦm(q, v)− logΦm+1(q, v).

We want to mention that fuzzy entropy also brings in a new parameter q which
increases the complexity of computation.

2In fact, Chen et al. (2009) did not explicitly specify the fuzzy function. For simplicity, we
take the Gaussian similarity function as an example.
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2.3.5 Nonparametric Relative Entropy

Robinson (1991) proposed a consistent nonparametric entropy-based test for
independence in time series. To be specific, let {Xt} be a real-valued strictly
stationary time series. It is assumed that Xt has a common probability den-
sity function h(x), X1 and X2 have a joint probability density function f(x, y).
Suppose that Xt and Xt+1 are independent, then the null hypothesis is

H0 : f(x, y) = h(x)h(y), for all x, y. (2.23)

Robinson (1991) constructed a nonparametric test statistic for hypothesis (2.23)
based on Kullback and Leibler entropy. Let f̂(x, y) and ĥ(x) be the nonparametric
density estimators of f(x, y) and h(x). The entropy-based test statistic is

I
(
f̂ , ĥĥ

)
=

∫ ∫
f̂(x, y) log f̂(x, y) dxdy − 2

∫
ĥ(x) log ĥ(x) dx. (2.24)

The integrals in (2.24) bring difficulty to calculation. It is a common technique
to replace the integrals with summands (Robinson, 1991), then an alternative
estimator is

Î
(
f̂ , ĥĥ

)
=

1

N

∑
t∈S

log
(

f̂(Xt, Xt+1)

ĥ(Xt)ĥ(Xt+1)

)
, (2.25)

where S = {t ∈ N : f̂(Xt, Xt+1) ≥ 0, ĥ(Xt) ≥ 0, 1 ≤ t ≤ N − 1} and N is the
cardinality of S. By sample-splitting device, the author generalized (2.25) to

Îγ

(
f̂ , ĥĥ

)
=

1

Nγ

∑
t∈S

ct(γ) log
(

f̂(Xt, Xt+1)

ĥ(Xt)ĥ(Xt+1)

)
, (2.26)

where ct(γ) = 1 + γ if t is odd; otherwise ct(γ) = 1 − γ, γ ≥ 0 and Nγ = N for
N even and N + γ for N odd. Under the appropriate conditions (see, Robinson,
1991, p. 441), estimator (2.26) is consistent.

As Robinson (1991) pointed out, the choice of γ is an open problem. To avoid
the selection of tuning parameter, Hong & White (2005) developed an asymptotic
distribution theory for nonparametric entropy of serial dependence, which does
not involve the sample splitting device. To be clearly, denote Zjt = (Xt, Xt+j)

T

where j = 1, 2, . . . , N − 1 is a given lag order, similar to estimator (2.25), Hong
& White (2005) proposed

Î(f̂ , ĥĥ) =
1

N − j
∑
t∈Sj

log
(

f̂(Xt, Xt+j)

ĥ(Xt)ĥ(Xt+j)

)
, (2.27)

as a test statistic for the null hypothesis: Xt and Xt+j are independent, where
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Sj = {t ∈ N : f̂(Xt, Xt+j) ≥ 0, ĥ(Xt) ≥ 0, ĥ(Xt+j) ≥ 0, 1 ≤ t ≤ N − j}. One
appealing feature of theory in Hong & White (2005) is that estimator (2.27) is con-
sistent and has a limiting distribution even j →∞. We extend estimator (2.27)
to the case of m consecutive lag order variables and develop a consistent theory
when m has upper bound, see Section 5.3.

2.3.6 Limiting Distribution

Pincus & Huang (1992) discussed statistical properties and applications of
approximate entropy. The smaller value of approximate entropy implies regu-
larity and predicability while larger approximate entropy means the substantial
fluctuations and irregularity in the time series. One can use ApEn to evaluate
the randomness. However, some problems, such as parameter choice, limiting
distribution of ApEn, remained unknown at that time.

Rukhin (2000) proved that the limiting distribution of ApEn converges in
distribution to χ2-distribution when m is given. When m increases to infin-
ity, Rukhin (2000) also obtained the normal limiting distribution with the param-
eters estimated by Poisson approximation, see Section 3 in Rukhin (2000). Robin-
son (1991) developed a theory for nonparametric relative entropy (RlEn) using
the sample-splitting device. To overcome the difficulty of tuning parameter selec-
tion in Robinson (1991)’s theory, Hong & White (2005) proposed a nonparametric
relative entropy test statistic to pairwise variables (Xt, Xt+j). The limiting dis-
tribution is still Gaussian even when j →∞.

2.3.7 Parameter Selection and Algorithm

As for the tuning parameters in ApEn, SpEn and FzEn, many approaches
in literature can address the selection of parameters. For example, Lu et al.
(2008) proposed using maximum ApEn to automatically select the optimal r.
Based on Monte Carlo simulations, they also obtained general equations for com-
puting the parameter r given m. There is a discussion about the r selection,
see Chon et al. (2009) and Section 2.2 in Udhayakumar et al. (2017).

As far as we know, there is no theory that describes how to select the em-
bedded parameter m and how to set up the length of time series N for ApEn,
SpEn, FzEn and RlEn. Nevertheless, Kaffashi et al. (2008) studied the effect of
time delay on ApEn and SpEn, they added the time delay parameter τ in the
entropy and discussed the τ selection, but no general criterion was proposed.

Besides the choice of tuning parameters, algorithms have been developed to
speed up the computation of entropy. Manis (2008) proposed two algorithms:
improved basic algorithm and bucket-assisted algorithm to compute the approx-
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imate entropy. However, the author did not mention whether these two algo-
rithms can be applied to the sample entropy. Pan et al. (2011) proposed kd
tree algorithm, sliding kd tree algorithm (SKD) and adaptive kd tree algorithm
(adaptive SKD) to compute both ApEn and SpEn. The complexity of com-
putation reduces from O(N2) to O(N3/2) with a price of O(N) memory stor-
age. Zurek et al. (2012) proposed norm-components matrix to accelerate the
computation of correlation dimension3, the algorithm can be found in https:
//github.com/sebzur/NCM-algorithm and Appendix in Zurek et al. (2012). Ma-
nis et al. (2018) proposed three algorithms to obtain the sample entropy. These
three algorithms are kd-tree, bucket assisted and lightweight which is the fastest
among them according to the authors’ results.

There are also some overviews which sum up the above entropies as well, e.g.,
for a review of approximate entropy, see Chen et al. (2009); the appropriate use of
ApEn and SpEn with the short datasets, see Yentes et al. (2013); the application
of FzEn, see Hsu (2015). We will not go further here and begin to introduce the
other statistical techniques used in this thesis.

2.4 Other Techniques Used in Thesis

In this section, we provide a brief overviews of covariance shrinkage, false
discovery rate (FDR), four basic concepts in graphic model and Jackknife kernel
which are adopted in this thesis.

2.4.1 Covariance Shrinkage

Ledoit & Wolf (2004) proposed a framework of large covariance shrinkage
such that the covariance is well-conditioned to obtain the precision matrix. This
framework can be described as follows.

Let X be a p×n matrix with columns representing n i.i.d. observations from
a distribution with zero mean and covariance matrix Σ. Suppose X has a finite
fourth moment. The sample covariance matrix estimator is S = n−1XXT . When
p is larger than n, the estimator S is usually ill-conditioned which hinders the
statistical inference of covariance matrix. In numerical calculations, one common
knowledge of dealing with ill-conditioned is by adding an identity matrix I to S,
i.e., Σ∗ = ρ1I+ρ2S, where ρ1, ρ2 are the coefficients to be determined. Define the
inner product of two p×p matrices A1, A2 by 〈A1, A2〉 = tr(A1A

T
2 )/p. Denote ‖·‖2F

as the squared Frobenius norm loss, we have ‖A‖2F = tr(AAT )/p. By using these
notations, let µ = 〈Σ, I〉, α2 = ‖Σ− µI‖2F , β2 = E‖S − Σ‖2F , δ2 = E‖S − µI‖2F .

3The terminology correlation dimension is a concept used in the computation of ApEn and
SpEn, see Zurek et al. (2012) for more details.

https://github.com/sebzur/NCM-algorithm
https://github.com/sebzur/NCM-algorithm
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Then we have α2+β2 = δ2, see Lemma 2.1 in Ledoit & Wolf (2004). Next, define
the objective function as

E = E‖Σ∗ − Σ‖2F . (2.28)

The aim is to find the optimal ρ1, ρ2 such that (2.28) is minimal. The solutions
verify that

Σ∗ =
β2

δ2
µI +

α2

δ2
S, ρ1 =

β2

δ2
µ, ρ2 =

α2

δ2
,

for more details, see Theorem 1 in Ledoit & Wolf (2004).

It is worth pointing out that the above results hold if the X is composed of
the i.i.d. observations. We need to modify this framework to adapt the non i.i.d.
case, for example, see Appendix A.1.

2.4.2 False Discovery Rate

We briefly review the main content of FDR. Let m1· represent the number
of true hypothesis, m2· represents the number of false hypothesis, so the total
number of test is m1· +m2· = m. Furthermore, let m·1 represent the number of
rejecting null hypothesis, m·2 represents the number of accepting null hypothesis,
also m·1 +m·2 = m. These can be summarized by Table 2.1. m11 is the number

Table 2.1: Classification of Multiple Hypothesis Tests

H0 is true H0 is false
Reject H0 m11 m21 m·1

Accept H0 m12 m22 m·2

m1· m2· m

of false discoveries, m21 is the number of true discoveries, m12 is the number of
true negatives, m22 is the number of false negatives. m·1 is an observable random
variable while m11,m12,m21,m22 are unobservable random variables. The false
discovery rate is defined as

FDR =
m11

m·1
.

We use Benjamini-Hochberg procedure (Benjamini et al., 2006) to control the
FDR at level α in Chapter 4.

2.4.3 Basic Concepts in Graphical Network

In this subsection, we will review four basic concepts in graphical network:
Edge Density, Vertex Strength, Clustering Coefficient and Centrality. We use
these definitions to evaluate the changes of network with respect to different
financial periods in Chapter 4.
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Let V and E represent the vertex and edge, define the network graph as
G = (V,E). The definition of Edge Density is

den(G) = |E|
|V |(|V | − 1)/2

,

where | · | represents the cardinality operator. For a weighted network, the Vertex
Strength or Weighted Vertex Degree is simply to add the weights of edges which
are directly connected to a given vertex. Let A = (aij)1≤i,j≤p and W = (wij)1≤i,j≤p

be the adjacency matrix and weight matrix, then we define the vertex strength
of G as

stren(G) =
p∑

i=1

p∑
j=1

aijwij.

For any vertex u ∈ V , the vertex centrality (Sabidussi, 1966) is

c(u) =
1∑

v∈V d(u, v)
, (2.29)

where d(u, v) is the distance between vertices u and v. This equation measures
the vertex centrality for Graph G. Freeman (1978) gave a measure of graph level
centrality, let c(u∗) be the maximum centrality among the q vertices, the graph
level centrality is

c(G) =
∑

u∈V [c(u∗)− c(u)]
(q2 − 3q + 2)/(2q − 3)

.

Clustering coefficient is defined as

clust(G) = 3τ∆(G)
τ(G)

,

where τ∆(G) represents the number of triangles in G and τ(G) is the connected
triples, i.e., a sub-graph of three vertices connected by two edges, for more detail,
see Kolaczyk (2009).

2.4.4 Jackknife Kernel

For bounded support of x, researchers prefer to use the Jackknife kernel to
correct the boundary effect. Denote Kh(x) = K(x/h)/h as the scaled kernel. Let
f0(·) be the density function of univariate x with support [0, 1]. The nonpara-
metric density estimator of f0(x) is f̂0(x) = n−1

∑n
i=1Kh(x − xi). Using change

of variable and second order Taylor expansion, the expectation of f̂0(x) can be
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obtained as

E
(
f̂0(x)

)
≈ f0(x)

∫ x/h

(x−1)/h

K(u) du− hf ′
0(x)

∫ x/h

(x−1)/h

uK(u) du

+
1

2
h2f ′′

0 (x)

∫ x/h

(x−1)/h

u2K(u) du.
(2.30)

If x ≤ 1 − h, then (x − 1)/h ≤ −1. Hence, (x − 1)/h in equation (2.30) can
be written as -1 because K(·) has the support [−1, 1]. Furthermore, let x = ρh,
ρ ≥ 0, then equation (2.30) can be simply expressed as

E
(
f̂0(x)

)
≈ f0(x)ω0(ρ)− hf ′

0(x)ω1(ρ) +
1

2
h2f ′′

0 (x)ω2(ρ), (2.31)

where ωl(ρ) =
∫ ρ

−1
ulK(u) du, l = 0, 1, 2. Note that if ρ ≥ 1 (equivalently x ≥

h), then according to Assumption 1 (on page 108), ω0(ρ) = 1 and ω1(ρ) = 0.
Therefore, we have

E
(
f̂0(x)

)
≈ f0(x) +O(h2), (2.32)

which indicates f̂0(x) is asymptotically unbiased with of order O(h2) if x ∈ [h, 1−
h]. However, when x ∈ [0, h) (or 0 ≤ ρ < 1), we can see 1/2 ≤ ω0(ρ) < 1. This
means estimator f̂0(x) is biased. To ensure the asymptotically unbiased property,
one can construct a ‘self-normalized’ estimator by f̂N(x) = f̂0(x)/ω0(ρ). The
expectation of f̂N(x) is

E
(
f̂N(x)

)
≈ f0(x)− hf ′

0(x)R1(ρ) +
1

2
h2f ′′

0 (x)R2(ρ), (2.33)

where Rl(ρ) = ωl(ρ)/ω0(ρ), l = 1, 2. Apparently the leading bias term in equa-
tion (2.33) is of order O(h) rather than O(h2) except f ′

0(x) = 0. In order to
let f̂N(x) be of the same order O(h2), John (1984) proposed Jackknife kernel to
eliminate the O(h) term. Only in the computation of RlEn in Chapter 5, we
adopt John (1984)’s Jackknife kernel method, more generalized Jackknife kernels
and discussions can be found in Jones (1993). Given bandwidth h, let f̂N(x;h) be
the estimator of f0(x) if x = ρh and 0 ≤ ρ < 1. Similarly, denote f̂N(x;h1) as the
estimator of f0(x) based on another bandwidth h1 if x = ρ1h1 and 0 ≤ ρ1 < 1.
The essence of John (1984)’s Jackknife kernel method is the linear combination
of two normalized kernel estimators with bandwidths h and h1 respectively, i.e.,

ḡN(x) = (1 + β)f̂N(x;h)− βf̂N(x;h1),

where β is the parameter to be determined later. One can easily verify that

E (ḡN(x)) ≈ f0(x) + f ′
0(x) [−h(1 + β)R1(ρ) + h1βR1(ρ1)] + O(h2 + h1

2). (2.34)



Chapter 2. Literature Review and Background 30

Let h1 = αh, according to ρ1h1 = ρh, then ρ1 = ρ/α. The leading bias term of
equation (2.34) is

hf ′
0(x) [−(1 + β)R1(ρ) + αβR1(ρ/α)] . (2.35)

With the appropriate choice of β:

β(ρ) =
R1(ρ)

αR1(ρ/α)−R1(ρ)
,

the leading bias term (2.35) vanishes so that E (ḡN(x))− f0(x) is of order O(h2)
as interior interval [h, 1−h]. It is easy to see that the Jackknife kernel is Kρ(u) =

h−1kρ(u), where

kρ(u) = (1 + β)
K(u)

ω0(ρ)
− β

α

K(u/α)

ω0(ρ/α)
. (2.36)

Now, we have obtained the Jackknife kernel for interval [0, h), using the same
way, we can get the Jackknife kernel for interval (1−h, 1] as well. If 1−h < x ≤ 1

and let 1− x = ρh then equation (2.31) is

E
(
f̂0(x)

)
≈ f0(x)ω

∗
0(ρ)− hf ′

0(x)ω
∗
1(ρ) +

1

2
h2f ′′

0 (x)ω
∗
2(ρ),

where ω∗
l (ρ) =

∫ 1

−ρ
ulK(u) du, l = 0, 1, 2. Using the same discussions as equa-

tions (2.32)-(2.35), one has β∗(ρ) =
R∗

1(ρ)

αR∗
1(ρ/α)−R∗

1(ρ)
, where R∗

1(·) = ω∗
1(·)/ω∗

0(·).
Since K(·) is symmetric, we have ω∗

0(·) = ω0(·), ω∗
1(·) = −ω1(·), R∗

1(·) = −R1(·)
and β∗(ρ) = β(ρ). Therefore, for x ∈ (1−h, 1], ρ = (1−x)/h, the Jackknife kernel
has the same form of equation (2.36). Recalling that α is not yet determined, in
this thesis, we follow the choice of α in John (1984) and let α = 2 − ρ. Finally,
for univariate x, the Jackknife kernel is

KJ
h (x− y) =


h−1k(x/h)

(
x−y
h

)
, ifx ∈ [0, h).

h−1K
(
x−y
h

)
, ifx ∈ [h, 1− h].

h−1k[(1−x)/h]

(
x−y
h

)
, ifx ∈ (1− h, 1].

(2.37)

For more details, see John (1984) and Hong & White (2005).

We try our best to review the references relevant to this research. We hope
it outlines a full background from a bird’s eye view. Before we turn to the next
chapter, the remark on notations needs to be emphasized here. In this chapter,
we keep the symbol notations consistent with those in the references as possible
as we can. Because we quote many statistical methods in this chapter, it is hard
to coordinate the models using one set of notations. So whence we introduce the
statistical methods in one specific section, the notations used in this section will
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be emphasized again. But, from now on, the symbol notations in each chapter
are consistent to avoid the confusion. If the same notation appears in different
chapters, we will emphasize or re-define it in where it needs to. The general
notations for the following chapters can be found in List of Symbols.

As for the kernel function, we adopt the Gaussian kernel in Chapter 3 and Chap-
ter 4. In Chapter 5, we use the Jackknife kernel. No doubt, the frameworks and
relative entropy can be extended to the other kernels, however, this extension is
beyond this research, we will not discuss it any more.



Chapter 3

Factorized Estimation of
High-dimensional Nonparametric
Covariance Models

3.1 Introduction

Nonparametric estimation of the covariate-dependent conditional covariance
matrix Σ(u) in covariance models is fundamental to contemporary scientific re-
search including neuroimaging in neuroscience, disease mapping in health science,
daily ozone concentration analysis in environmental science, asset portfolio risk
analysis in finance and among others (Ledoit & Wolf, 2004; Yin et al., 2010;
Reich et al., 2011; Lamus et al., 2012; Fan et al., 2013; Fox & Dunson, 2015;
Zhang & Liu, 2015; Zhang & Su, 2015; Chen & Leng, 2016). However, most
efforts in nonparametric covariance estimation suffer from a curse of dimension-
ality (Fan et al., 2013). For example, the dataset we are studying in this chapter
contains historical returns of 75 assets over three time-periods, namely before-
financial-crisis, in-financial-crisis and after-financial-crisis with n equal to 84, 36
and 95 months respectively. Note that many more assets can be collected for
investigation whereas the number of months n in a period is sometimes quite
limited (Engle et al., 2017).

These authors pointed out that the resulting covariance estimator can still be
ill-conditioned for finite samples, where an ad-hoc and small constant is required
to add to its eigenvalues. These authors also established a consistency theory for
their estimators when the sample is from an independent identical distribution.
There are three main issues when we use these existing methods.

Firstly, the performance of these methods can be compromised by employing
the same smoothing bandwidth for the entries which have varying degrees of
smoothness. In particular, under the sparsity assumption, the covariance matrix

32
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function contains many zero entries which are in favour with infinite bandwidth
and thus affect the estimation of other nonzero entries if we use a single bandwidth
for the entries. On the other hand, letting each entry having its own bandwidth
will generate p(p+1)/2 tuning parameters to choose. The resulting estimator may
not be an appropriate covariance matrix estimator as it can be negative definite
for finite samples. Secondly, as the ad-hoc eigenvalues adjustment of Chen & Leng
(2016) to the estimated matrix is not principle-guided, it is desirable to explore
an optimal shrinkage procedure. Finally, the existing asymptotic theory holds
only for i.i.d. samples, in most of the applications, the samples are dependent.
For instance, in the above asset portfolio risk analysis, both market returns and
asset returns are serially correlated time series.

In this chapter, we have proposed a novel framework to address these is-
sues. It is based on a variance-correlation factorization of Σ(u) in the form of
Σ(u) = Q0(u)C0(u)Q0(u)

T , where Q0(u) is a diagonal matrix function composed
by the square roots of the diagonal entries of Σ(u) and C0(u) is the correla-
tion matrix function. We further factorize C0(u) into the product of invertible
band matrix factors of Σ(u). In general, we choose band matrices which are less
complex than Σ(u). In the proposal, we first estimate these band matrices in
turn with separate kernel bandwidths, followed by entry-wise thresholding on the
resulting estimator of C0(u). Estimation of these band matrices with different
bandwidths is expected to improve the flexibility of the proposal and thus to
provide a more accurate estimator for Σ(u). Intuitively, performing thresholding
on estimated correlations is better than on covariances, since the variation of the
estimated correlations is likely to be smaller and more homogenous than that
of the estimated covariances. The reason is that our model is heteroscedastic,
so thresholding correlation coefficients is more appropriate than thresholding the
covariance matrix. In fact, thresholding correlations has been proved adaptive
to the variability of individual entries of covariance matrix (Cai & Liu, 2011).
Finally, a well-conditioned and optimal shrinkage estimator of Σ(u) is derived
by minimizing the Frobenius norm loss. In summary, the proposed framework
differs from the DCM in using multiple factorization-based bandwidths, thresh-
olding correlations and taking into account the shrinkage effect. The proposal
can be viewed as a nonparametric extension of the so-called DCC-GARCH ap-
proach (Engle et al., 2017), a popular technique for estimating a multivariate
time series model.

To evaluate the performance of the new proposal, a set of simulation stud-
ies are conducted. The results demonstrate that the new proposal substantially
outperforms its counterparts in terms of the Frobenius norm loss and other cri-
teria. The proposed method is illustrated through an application to the analysis
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of monthly return data for a group of risky assets mentioned above. The analysis
reports the following findings: (1) Some asset returns present a striking nonlin-
ear departure from the Capital Asset Pricing Model (CAPM) (Fama & French,
2004). (2) Both volatility and co-volatility of these asset returns are market-
dependent, see Figures A.1–A.3 for more details. These two findings provide
empirical support for building a nonparametric CAPM for risk assessment and
portfolio selection. We also establish an asymptotic theory for the new proposal:
under some mixing and regularity conditions, the proposed estimator is asymp-
totically consistent with the underlying covariance matrix function even when
the samples are dependent. In the procedure, the thresholding step ensures that
the resulting estimator converges to the true covariance matrix with a good rate
while the shrinkage step makes the resulting estimator not ill-conditioned even
infinite. To prove the above theory, a dedicated concentration inequality different
from Chen & Leng (2016) is employed for dependent samples. In particular, the
proof for the convergence rate of the proposed shrinkage is non-trivial. Note that
without the extra thresholding step, a standard shrinkage estimator is expected
to have convergence rate of Op(

√
p/(nh)), where h is the bandwidth in the kernel

estimation (Ledoit & Wolf, 2004). After adding the extra thresholding step in
the shrinkage procedure, we show that the resulting estimator has a faster con-
vergence rate Op(

√
log(p/h)/(nh)) than the standard shrinkage if the underlying

covariance matrix is sparse.

The rest of this chapter is organized as follows. First, we introduce our
motivations behind the framework in Section 3.2, then the proposed factorized
estimators are introduced in Section 3.3. The corresponding algorithms are de-
veloped to determine the bandwidths in the related kernel smoothing as well as
the levels of thresholding and shrinkage. The uniform consistency and the con-
vergence rate of the proposed estimator are established with dependent samples
in Section 3.4. In Section 3.5, simulation studies are conducted to evaluate the
performance of the proposed method and compare it to the existing method.
The proposed procedure is employed to analyse financial returns for a group of
assets. We conclude with a discussion in Section 3.6. The numerical results are
postponed to Appendix A.

Throughout this chapter, we let λmin(·) and λmax(·) denote the minimum and
maximum eigenvalues of a square matrix. For a vector x, let ||x|| denote its
Euclidean norm. For a square matrix A = (aik)p×p, let ||A||F =

√
tr(AAT )/p,

||A|| = λ
1/2
max(AAT ), ||A||max = maxik |aik| and ||A||∞ = max1≤i≤p

∑n
k=1 |aik| de-

note its (size-normalized) Frobenius, spectral, max and ∞-norms. Let 〈A,B〉 =
tr(ABT )/p be the inner product of square matrices A and B. Note that these
norms satisfy ||A||F ≤ ||A|| ≤ ||A||∞ ≤ max1≤i≤p

∑p
j=1 I(|aik| > 0)||A||max. Let
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c ∧ d and c ∨ d denote the minimum and maximum of numbers c and d. Let
Ip be a p−dimensional identity matrix. Next, we introduce the motivations of
Factorized NCM.

3.2 Motivation

In this section, we will analyse the current issues in dynamic covariance model
such as the choice of covariance estimator, the cross validation criterion, the ad-
hocly adjusted estimator and the effect of sparsity.

3.2.1 The Choice of Covariance Estimator

There are two covariance estimators in literature, see Section 2.1.3. One is
estimator (2.13) (Yin et al., 2010) and the other is estimator (2.14) (Chen &
Leng, 2016). Estimators (2.13) and (2.14) are

Σ̂(u) =
∑n

i=1
wih(u)(yi − µ̂(ui))(yi − µ̂(ui))

T ,

Σ̂1(u) =
∑n

i=1
wih(u)(yi − µ̂(u))(yi − µ̂(u))T .

If the mean function µ̂(ui) is constant with respect to ui, then Σ̂(u) and Σ̂1(u)

are equivalent especially when the mean function is zero. Note that Σ̂(u) differs
from Σ̂1(u) in terms of estimating the residuals: The former uses estimators
yi − µ̂(ui) = Σ(ui)

1/2εi + µ(ui) − µ̂(ui), 1 ≤ i ≤ n while the latter adopts
estimators yi − µ̂(u) = Σ(ui)

1/2εi + µ(ui)− µ̂(u), 1 ≤ i ≤ n. Here, compared to
µ(ui) − µ̂(ui), µ(ui) − µ̂(u) = µ(ui) − µ̂(ui) + µ̂(ui) − µ̂(u) has an extra bias
µ̂(ui) − µ̂(u). So Σ̂(u) is expected to perform better than Σ̂1(u), see Remark 2
in Yin et al. (2010) and table results in Appendix A. In Chen & Leng (2016)’s
work, they assumed the mean function is zero so that these two estimators are
equivalent. In general, we consider both mean function and covariance function.
Without loss of generality, we adopt Σ̂(u) as the covariance matrix estimator
in Chapter 3 and Chapter 4.

3.2.2 The Criterion of Cross Validation

The criterion of bandwidth selection is crucial in nonparametric covariance
estimation. It not only determines the performance of nonparametric covariance
estimator but also has a big influence on computational complexity. Appropriate
criterion can speed up the selection of bandwidth, see Figure 3.1. Both cross
validation criteria: (2.15) and (2.16) include the computation of inverse of covari-
ance estimator. As aforementioned in Section 2.2, for a p× p square matrix Σ̂(u)
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in high-dimensional setting, the matrix inversion in (2.15) and (2.16) is still a
computational burden. Hence, we employ the criterion (2.18) to avoid the com-
putation of precision matrix. Criterion (2.18) avoids the computation of matrix
inversion, so our method performs efficiently in terms of time consumption as
illustrated in Figures 3.1(a) and 3.1(b).
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Note: In Figure (a), the green line, blue dashed line, red dashed line and
purple line with ∗ represent DCM1, DCM2, tNCM0 and stNCM0 for 90 datasets
respectively. In Figure (b), the green line, blue dashed line, red dashed line
and purple line with ∗ represent sDCM1, DCM2, tNCM1 and stNCM1 for 90
datasets respectively. There are 90 datasets, n = 100 and p = 100.

Figure 3.1: Comparison of The CPU-time Consumptions

Figures 3.1(a) and 3.1(b) show the comparison of time consumptions in sec-
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onds when we apply DCM1, sDCM1, DCM2, tNCM0, stNCM0, tNCM1 and stNCM1 to each
of 90 datasets in Macbook Pro (CPU: 2.6 GHz 6-Core Intel Core i7, macOS: Big
Sur). These datasets are simulated from the Setting 1 with ρ = 0. There are four
different methods in Figure 3.1(a) and Figure 3.1(b), see Section 3.5 for more
details. We can see that DCM estimators using criterion (2.16) consume more
time than our nonparametric covariance estimators.

3.2.3 The Modified Covariance Estimators

In practice, the dimension p is frequently much larger than the effective local
sample size nh. This results in a degenerate covariance estimator. To mitigate the
high-dimensional effect, researchers modify the covariance estimator by trimming
its entries (Bickel & Levina, 2008a). Chen & Leng (2016) also adopted Bickel
& Levina (2008a)’s threshold method in the DCM framework. Furthermore,
under sparsity and regularity conditions on (yi, ui)

n
i=1, the threshold covariance

estimator is shown to be consistent for an i.i.d. sample with a convergence rate√
log(p)(Op(

√
1/(nh)) + h2) (Chen & Leng, 2016).

However, for a finite sample, Chen & Leng (2016) pointed out that the pro-
posed estimator may be degenerated. To obtain positive definiteness, they ad-
hocly adjusted the estimator by adding the smallest eigenvalue-dependent number
to its diagonals, i.e., the modified estimator is

Σ̂c(u) = sλ(Σ̂(u)) + {−â(u) + cn}Ip, (3.1)

where â(u) is the smallest eigenvalue of sλ(Σ̂(u)) and sλ(z) = zI(|z| ≥ λ) repre-
sents the hard threshold function. They suggested using

cn = O

(
c0(p)

(√
log p/(nh) + h2

√
log p

)1−q
)
, (3.2)

as a small positive number in the adjusted estimator (3.1). As far as we know,
there is no available way in literature to determine the constant c0(p).

As mentioned above, Chen & Leng (2016) employed (3.1) to guarantee the
positive definiteness of threshold nonparametric covariance estimator. However,
the authors did not point out how to determine the constant (3.2). Hence, we
need to find another method. We also notice that Ledoit & Wolf (2004) proposed
a shrinkage method for the i.i.d. sample, see the review in Section 2.4.

The idea behind the modified covariance matrix estimator (Ledoit & Wolf,
2004) is to find the optimal linear combination of the sample covariance matrix S
and the identity matrix Ip by minimizing the expected squared Frobenius norm,
see Section 2.4.1. Compared with adding cnIp in equation (3.1), Ledoit & Wolf
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(2004)’s shrinkage coefficient ρ is determined by the observations. This is a more
desirable property if we can extend Ledoit & Wolf (2004)’s shrinkage method
to nonparametric covariance estimation. Both Chen & Leng (2016) and Ledoit
& Wolf (2004)’s methods can make the covariance matrix estimators positive-
definite, however there is no standard criterion to choose the constant (3.2). For
this purpose, we have derived the optimal shrinkage coefficient in nonparametric
covariance circumstance in Appendix A.1 and the results in Appendix A.2 show
that the shrinkage estimator performs consistently better than the non-shrinkage
estimator.

3.2.4 The Effect of Sparsity

In high-dimensional settings, sparsity assumption is frequently required to
make sure the statistical estimator is consistent, e.g., Chaudhuri et al. (2007),
Cai & Liu (2011), Bien & Tibshirani (2011), Rothman et al. (2009), and Roth-
man (2012), and the references therein. We explore the smoothness of Σ(u) with
a common shared bandwidth as Yin et al. (2010)’s suggestion in high-dimensional
settings. The conclusion reports that it may introduce a large bias to estimate
nonzero entries when Σ(u) contains many unknown zero entries as illustrated
by the following pilot study. In this study, we clarify the zero entries problem,
then show how factorization can reduce the effect of zero entries in terms of
Frobenius norm loss. Note that our algorithm includes mean function estima-
tion, standardization, factorization, threshold and shrinkage, see Section 3.3. To
gain straightforward insight into factorization, we suppose the mean function is
zero, the underlying variance-covariance matrix is a sparse correlation coefficient
matrix so that we do not need to estimate the mean function and standardize
covariance matrix any more.

First, we introduce how to generate sparse symmetric correlation coefficient
matrix. We need to introduce two definitions: sparsity of matrix and sparsity of
strictly lower triangular matrix. Throughout this chapter, we define the sparsity
of a p-dimensional matrix as the number of zero entries divided by p2, denoted as
S. Next, we define the strictly lower triangular matrix L = (lij)p×p, where lij = aij

if i > j; otherwise 0. Denote p0 = p(p − 1)/2, nz = #{aij = 0, 1 ≤ j < i ≤ p},
then the sparsity of L is defined as S∗

L = nz/p0. The sparse symmetric correlation
coefficient matrix is generated by three steps: (1) Let R(u) = (rij(u))p×p, where
rij(u) = exp (100u sin(ij)) sin(πu), then initialize the indicator matrix E by let-
ting the entries be 1. (2) Let LE represent the strictly lower triangular matrix of
E, then there are p0 1-entries in LE. Given S∗

L, we randomly draw p∗ = bp0S∗
Lc

entries from LE and change the values at these p∗ entries to 0, update the in-
dicator matrix E by LE + Ip + LT

E, where Ip represents the identity matrix and
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superscript T denotes transpose. (3) Renew R(u) = R(u)�E, where � represents
matrix component-wise multiplication. Now R(u) is sparse and symmetric but
may be negative definite. To satisfy the positive definite requirement of variance-
covariance matrix, we let C(u) = R(u)×R(u). Finally, standardize C(u) to obtain
Σ(u) = [Diag(C(u))]−1/2C(u)[Diag(C(u))]−1/2.

For simulation, we let n = 250, p = 100. Covariates ui, i = 1, . . . , n are
randomly drawn from interval [−0.95, 0.95]. Without loss of generality, we let
Σ(ui), i = 1, . . . , n be correlation coefficient matrices. Given S∗

L, for each ui,
we obtain the Σ(ui) using the above procedure, then draw one observation from
multivariate norm distribution with zero mean and covariance Σ(ui). In this
example, we specify S∗

L as 0.855, 0.91, 0.95, 0.97, 0.98, 0.985, 0.99, 0.995, the
corresponding final sparsity of variance-covariance matrix, i.e., SΣ, are 0.10, 0.40,
0.74, 0.88, 0.93, 0.95, 0.97, 0.98 (SΣ maybe fluctuate with different random seed).

Based on the sample, we calculate the curves of cross-validation values against
bandwidth for each SΣ = 0.10, 0.40, 0.74, 0.88, 0.93, 0.95, 0.97, 0.98. These curves
have different scales, so we rescale these curves using each curve divided by its
minimum value, these results are illustrated in Figure 3.2. The numbers behind
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Figure 3.2: Cross Validation Curves with Different Sparsity

arrows are the sparsity of variance-covariance matrix, i.e., SΣ. As sparsity SΣ
increases from 0.10 to 0.98, the curves become flatter, and the optimal band-
width tends to infinity. Furthermore, we repeat the previous process 90 times
and compute the Frobenius norm loss for zero and nonzero off-diagonal entries,
the box-plots in Figure 3.3 represent the 90 average Frobenius norm losses. The
optimal bandwidth goes to infinity because zero entries gradually dominate the
bandwidth selection whence the sparsity increases. That means one will use the
global arithmetic average of yiyT

i to estimate the local value of correlation coef-
ficient function, or simply, using constant line to estimate correlation coefficient
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(a) off-diagonal, nonzero part (b) off-diagonal, zero part

Figure 3.3: Frobenius Norm Loss for Different Sparsity

function for nonzero off-diagonal entries when the bandwidth h → +∞. Hence,
the bias comes from the wrong selected bandwidth for nonzero off-diagonal en-
tries. Therefore, the average Frobenius norm losses in nonzero part become larger
and larger while the losses in zero part become smaller and smaller. In Chapter 3
and Chapter 4, we call it zero entries problem. This phenomenon exists in the
nonparametric mean function estimation as well, there still exists zero entries
problem.

We develop a factorized nonparametric covariance model to solve the zero
entries problem, for more technical details, see Section 3.3. Next, we will show
how factorized nonparametric covariance model could reduce the bias of nonzero
entries.

In the procedure of covariance matrix estimation, if we only adopt the fac-
tor matrix Q0, then the off-diagonal entries share one common bandwidth. If
there are many zeroes among the off-diagonal entries, then we can encounter the
zero entries problem. To illustrate how the factorization matrices Q0, Q1, . . . can
reduce the effect of the zero entries, we simply compare 2 methods here. Q1 rep-
resents the method using Q̂1(ui) factor while Q0 represents method without using
factorization. In fact, Q̂0(ui) factor belongs to the standardization step which in
this simulation we need not estimate. Figure 3.4(a) shows the bandwidth selec-
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Figure 3.4: Bandwidth Selection for Method Q0 and Q1 when SΣ = 0.97
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tion in method Q0. Since there is no factorization and the sparsity SΣ = 0.97,
zero entries contribute a major effect on bandwidth selection and let the CV
against bandwidth h∗0 curve be flatter. However, in Figure 3.4(b), the optimal
bandwidth h1 can be obtained at around 0.3091. In fact, the optimal bandwidth
in Figure 3.4(a) is 1.5354 which is larger than 1. To investigate the kernel weight
performance, let u0 = 0, Figure 3.4(c) shows the kernel weight Kh(u − u0) for
ĥ∗0 = 1.5354 and ĥ1 = 0.3091 respectively. Clearly, the bandwidth ĥ∗0 = 1.5354

means that each observation has almost the same weight. When the sparsity
continues to increase, the bandwidth will go to infinity as Figure 3.2 shows.

Note that, in this simulation, the locations of zero entries are randomly drawn
and the elements of ỹi’s are re-ranked, we can guarantee that at least the first off-
diagonal entries of ỹiỹT

i can not be estimated by constant. Figure 3.5 shows the
average Frobenius loss. At each condition ui, i = 1, . . . , n, we evaluate the Frobe-
nius norm loss of correlation coefficient matrix, then take average of n Frobenius
norm losses respectively. Finally, we repeat this procedure 90 times. To avoid
the effect of threshold and shrinkage, we do not implement these two steps in this
simulation. Because the off-diagonal entries contain zero and nonzero entries, and
their locations are already known in the data generation process. We compute
the Frobenius norm loss for both zero and nonzero parts respectively, see Fig-
ures 3.5(a) and 3.5(b). The losses of zero part for method Q0 and Q1 are almost
equivalent, but the Frobenius loss of method Q1 in nonzero part is significantly
lower than the loss of method Q0. Similar to Chen & Leng (2016), they used

(a) off-diagonal nonzero part (b) off-diagonal zero part

Figure 3.5: The Frobenius Norm Loss of Method Q0 and Q1

the median Frobenius norm loss to evaluate the performance of different method,
here we want to mention that a smaller loss will imply a better performance.
In this simulation, the median Frobenius norm loss (3.16) of both methods Q0

and Q1 are 0.287 and 0.186 respectively. The relative improvement of method
Q1 to method Q0 under this sparsity is 35.19%. This means that the NCM with
one factor band matrix (m = 1) performs better than that without factor band
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matrix (m = 0). Note that we only concentrate on the factorization step in this
case and just one factor Q̂1(ui) involved under SΣ = 0.97. When more factors are
added in, the improvement will be much larger. However, each added-in factor
will increase the computational complexity in terms of computing inverse matrix
Q̂−1

m (ui) and bandwidth selection. An et al. (2014) proposed a hypothesis testing
to detect the band size under high-dimensional banded precision matrices circum-
stance. However, we can not directly extend this parametric hypothesis test to
our nonparametric case, because we did not assume that the precision matrix is
a band matrix, e.g., setting 2 in Section 3.5. In this simulation, the zero entries
locations are randomized which means our variance-covariance matrix is more
flexible than just the band matrix.

To the best of our knowledge, the usual criteria to select model are AIC, BIC
or cross validation method. However, they fail to select the number of factors
since it is hard to establish the criteria in terms of the Frobenius norm loss. In
practise, I suggest two alternative methods to select m. (1) Let m increase 1 by
each step, repeat the whole NCM algorithm until the difference between Frobenius
norm loss in m and m+1 step is less than user-specified threshold value, say 10−4.
(2) Let m increase 1 by each step, if the bandwidth ĥm is very large, say 100,
then it means the entries share the same weight, the improvement seems to be
insignificant. In this sense, one can stop here and return m. However, these two
methods are not verified by simulation since for each fixed m, one implementation
of NCM will cost about one week in high performance computing cluster with 96
CPU cores. Therefore, throughout this chapter we let m = 1 due to the trade-off
between loss improvement and computational complexity.

Furthermore, we also extend our model to non i.i.d. case, see the settings in
Section 3.5. The results in Appendix A show that our factorized estimation of
nonparametric covariance model uniformly performs better than DCM method
for non i.i.d. as well.

3.3 Methodology

Let Y = (Y1, . . . , Yp)
T ∈ Rp be a p−dimensional random vector and U ∈ R

be the associated index random variable. We model the conditional mean and
covariance matrix of Y given U = u as µ(u) = E[Y|U = u] and cov(Y|U = u) =

Σ(u) respectively whose entries are assumed to be an unknown smooth function
of u. Suppose that (yi, ui)

n
i=1 with yi = (yi1, . . . , yip)

T , are random observations
from the population (Y, U), satisfying the equations

yi = µ(ui) + Σ(ui)
1/2εi, i = 1, . . . , n,
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where µ(ui) = (µ1(ui), . . . , µp(ui))
T , (ui)ni=1 is a dependent random sample of U .

Also, given (ui)
n
i=1, εi’s are dependent with zero means and identity matrices (i.e.,

E[εi|ui] = 0p, cov(εi|ui) = Ip and E[εiεTj ] 6= 0, i 6= j).

Let K(u) be a kernel density function, Kh(u) = h−1K(u/h) (the scaled kernel
function with a bandwidth h > 0) and wih(u) = Kh(ui−u)/

∑n
k=1Kh(uk−u) (the

weighting function). Yin et al. (2010) considered the following kernel estimators
for µ(·) and Σ(·):

µ̂(u) =
n∑

i=1

wihα(u)yi,

Σ̂(u) =
n∑

i=1

wihβ
(u)(yi − µ̂(ui))(yi − µ̂(ui))

T ≜ (σ̂kj(u))1≤k,j≤p,

(3.3)

where hα and hβ are bandwidths for mean and covariance matrix functions. As
mentioned in Section 3.2, estimator (3.3) will encounter the problems of zero-
entry effect and non-positive definiteness in high-dimensional settings. We will
develop a framework to overcome these problems.

3.3.1 Standardization

To improve the above covariance estimator, we consider a variance-correlation
factorization in the form Σ(u) = Q0(u)C0(u)Q0(u), where Q0(u) = Diag(Σ(u))1/2

and C0(u) = Q0(u)
−1Σ(u)Q0(u)

−1.

Firstly, we need to estimate the diagonal entries Q0(u) with a Q0(u)-specified
bandwidth h = h0. Given u, the nonparametric variance estimator of each entry
of yi can be written as

σ̂11(u) =
n∑

j=1

Kh0(uj − u)∑n
j=1Kh0(uj − u)

(y1j − µ̂1(uj))
2,

... =
...

σ̂pp(u) =
n∑

j=1

Kh0(uj − u)∑n
j=1Kh0(uj − u)

(ypj − µ̂p(uj))
2.

(3.4)

Let Q̂0(u) = diag
(√

σ̂kk(u) : 1 ≤ k ≤ p
)

, for each u = ui, i = 1, . . . , n, we can
compute the diagonal entries’ estimators Q̂0(u1), . . . , Q̂0(un). Then, we standard-
ize yi, 1 ≤ i ≤ n by using µ̂(ui) and Q̂0(ui), i.e., ỹi = Q̂−1

0 (ui) (yi − µ̂(ui)).

There are two bandwidths need to be selected here.

Bandwidth selection for µ̂(u). We minimize the following function

CVµ(hα) = n−1
∑n

i=1
[yi − µ̂hα,−i(ui)]

2ω(ui),
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to choose the optimal bandwidth ĥα, where µ̂hα,−i(ui) is the leave-one-out kernel
mean function estimator, which is estimated by the local linear smoother based
on the data without the ith observation. In analogy to the ASE function (Gasser
& Müller, 1979), we apply the trimming function ω(ui) = 1(u(l+1) ≤ ui ≤ u(n−l))

to CVµ(hα) to get rid of the boundary effects, where u(l) is the lth order statistic
of (ui)ni=1 and in our simulation, we set l = b0.05nc. The optimal bandwidth for
µ̂(u) is ĥα = arg minhα

CVµ(hα).

Bandwidth selection for Q̂0(ui). Regarding the selection of smoothing param-
eter for σ̂kk(ui), i = 1, . . . , n, k = 1, . . . , p, we use the following cross validation
criterion to select the optimal bandwidth:

CV0(h0) =
n∑

i=1

p∑
k=1

{
(yki − µ̂k(ui))

2

σ̂kk(−i)(ui)
+ log(σ̂kk(−i)(ui))

}
, (3.5)

where σ̂kk(−i)(ui) represents the k-entry variance estimated by equation (3.4)
without the i-th observation at given ui. The optimal bandwidth for Q̂0(ui)

is ĥ0 = arg minh0
CV0(h0).

3.3.2 Factorization

There are a few matrix factorization algorithms for estimating a covariance
matrix in literature, for example, the Cholesky algorithm (Rothman et al., 2010).
In this chapter, we introduce a factorization method based on a series of pre-
selected invertible band matrices.

In the previous section, we have obtained the standardization of yi, hence the
correlation coefficient matrix has the plug-in estimator

Ĉ0(u) =
∑n

i=1
wih(u)ỹiỹT

i , (3.6)

with bandwidth h to be discussed later in this section. To reduce the zero entries
effect introduced in Section 3.2.4, we further factorize C0(u) intoQ1(u)C1(u)Q1(u)

T

with

Q1(u) =



1 ρ12(u) 0 0 · · · 0

0 1 ρ23(u) 0 · · · 0

... ... ... ... ... ...

0 0 · · · 0 1 ρ(p−1)p(u)

0 0 · · · 0 0 1


. (3.7)

Note that (3.7) has the explicit iterated inverse matrix (e.g., see Kiliç & Stanica,
2013). To avoid ρ12(u), . . . , ρ(p−1)p(u) including too many zero entries, we re-
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rank the coordinates of Y by maximizing the marginal correlations of consecutive
coordinates as follows:

Let ỹ(s) denote the sth row of the standardized data matrix ỹ = (ỹ1, . . . , ỹn).
Let s1 = 1 and S1 = {2, . . . , p}. For k = 2, . . . , p, define

sk = arg max
s∈Sk−1

∣∣corr
(
ỹ(s), ỹ(sk−1)

)∣∣ ,
and Sk = Sk−1\{sk}, where corr(·, ·) denotes the operator for calculating the
sample correlation between two random vectors. Let Y∗ =

(
Ys1 , . . . , Ysp

)
be the

re-ranked Y. Then the largest absolute correlation coefficient entries (except the
diagonal) in C0(u) are likely re-arranged to be close to the diagonal band. To
simplify the notation, in the following we assume that the underlying coordinates
have already been ranked. In many applications, the above assumption may hold
when coordinates in Y have a natural ordering.

The estimator of Q1(u) can be obtained by nonparametric kernel estimation
based on the standardized observations ỹi, namely, Q̂1(u) = (q̂

(1)
kj )1≤k,j≤p

, where

q̂
(1)
kj =


1, 1 ≤ k = j ≤ p.∑n

i=1wih1(u)ỹkiỹ(k+1)i, j = k + 1, 1 ≤ k ≤ p− 1.

0, otherwise.

(3.8)

where h1 is the bandwidth only for the first diagonal entries in factor (3.7). Hence,
using the factors Q̂1(ui), i = 1, . . . , n, we have the following transformation:

y̆i = Q̂1(ui)ỹi, i = 1, . . . , n. (3.9)

Based on this transformation, the correlation coefficient matrix estimator is

Ĉ0(u) = Q̂−1
1 (u)Ĉ1(u)Q̂

−1
1 (u)

T
, (3.10)

where
Ĉ1(u) =

∑n

i=1
wih(u)y̆iy̆T

i . (3.11)

Now, we compare the bandwidths in two estimators (3.6) and (3.10). With-
out factorization, the bandwidth in former estimator (3.6) is shared by the off-
diagonal entries, the bandwidth h0 of main diagonal entries is selected via crite-
rion (3.5). Considering Q1(u)-factorization, the bandwidth h1 in Q̂1(u) is shared
by the first off-diagonal entries in the latter estimator (3.10). The rest of entries
(except the main and first off-diagonal entries) in the latter estimator (3.10) share
one common bandwidth as illustrated in estimator (3.11).
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Clearly, we can see that the transformation (3.9) can guarantee at least the
first diagonal entries of Ĉ0(u) not to be affected by the zero entries problem. More
generally, we can repeat the same factorization step for the second off-diagonal,
the third off-diagonal, . . ., the mth off-diagonal as follows:

Q̂2(u) =
(
q̂
(2)
kj

)
1≤k,j≤p

, q̂
(2)
kj =


1, 1 ≤ k = j ≤ p.∑n

i=1 wih2
(u)ỹkiỹ(k+1)i,

j = k + 2,

1 ≤ k ≤ p− 2.
0, otherwise.

Q̂3(u) =
(
q̂
(3)
kj

)
1≤k,j≤p

, q̂
(3)
kj =


1, 1 ≤ k = j ≤ p.∑n

i=1 wih3
(u)ỹkiỹ(k+1)i,

j = k + 3,

1 ≤ k ≤ p− 3.
0, otherwise.

...

Q̂m(u) =
(
q̂
(m)
kj

)
1≤k,j≤p

, q̂
(m)
kj =


1, 1 ≤ k = j ≤ p.∑n

i=1 wihm(u)ỹkiỹ(k+1)i,
j = k +m,

1 ≤ k ≤ p−m.
0, otherwise.

(3.12)

with bandwidths h2, . . . , hm. Using the above band matrices, we make the trans-
formation: y̆i = Q̂−1

m (ui) · · · Q̂−1
1 (ui)ỹi, 1 ≤ i ≤ n. For m ≥ 1, we estimate Cm(u)

by
Ĉm(u) =

∑n

i=1
wih(u)y̆iy̆T

i . (3.13)

Let Q̂(u) = Q̂1(u)Q̂2(u) · · · Q̂m(u), P̂ (u) = Q̂−1(u), then we have

Ĉ0(u) = P̂ (u)Ĉm(u)P̂ (u)
T
. (3.14)

For pre-fixed m, correlation coefficient matrix estimator (3.14) includes m + 1

separate bandwidths which can overcome the zero entries problem stated in Sec-
tion 3.2.4. Because estimator (3.14) has multiple bandwidths which implies that
the zero entries will not affect the bandwidth selection for the first m off-diagonal
entries if m is appropriately pre-specified.

Bandwidth for estimating Qk(u), 1 ≤ k ≤ m. We choose the bandwidth
ĥk = arg min CVk(hk) at which the following criterion attains the minimum:

CVk(h) =
1

n

n∑
i=1

p−k∑
j=1

(
ρ̂j(j+k)(−i)(ui)− ỹij ỹi(j+k)

)2
,

where ρ̂j(j+k)(−i)(ui) is the kernel estimator of the j(j+k)th correlation ρj(j+k)(ui)

based on the leave-one-out dataset (ỹt, ut)t ̸=i.

Bandwidth for estimating Ĉ0(u). There are two existing cross-validation
methods for selecting the bandwidth h for Cm(u). One is a Stein-loss-based
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approach (Yin et al., 2010) which is applicable only to low-dimensional data.
The other is a subset-based approach (Chen & Leng, 2016) for high-dimensional
data. As discussed in Section 3.2.2, for simplicity, we choose the optimal band-
width based on the Frobenius norm to avoid the computation of matrix inversion.
Without factorization (m = 0), the criterion of bandwidth selection is

CVC0(h) = n−1
∑n

i=1

∥∥∥Ĉ0(−i)(ui)− ỹiỹT
i

∥∥∥2
F
,

where Ĉ0(−i)(ui) is the kernel estimator of (3.6) without the i-th observation. The
optimal bandwidth is ĥ = arg minh CVC0(h).

Bandwidth for estimating Ĉm(u). The cross validation criterion is

CVC(h) = n−1
∑n

i=1

∥∥∥Ĉm(−i)(ui)− y̆iy̆T
i

∥∥∥2
F
,

where Ĉm(−i)(ui) is the kernel estimator of Cm(u) based on the leave-one-out
dataset (y̆j, uj)j ̸=i like estimator (3.13). The optimal bandwidth for estimating
Ĉm(u) is ĥ = arg minh CVC(h).

3.3.3 Threshold

Note that the dimension p is larger than the local sample size nh. This
results in a degenerate estimator Ĉ0(u). Following Bickel & Levina (2008a), we
regularize the above correlation matrix estimator by thresholding its entries as
follows:

Ĉ
(t)
0 (u) =

(
ĉjk(u)1

(
|ĉjk(u)| > t0(u)

√
log(p/h)/(nh)

))
1≤j,k≤p

,

where ĉjk(u) is the (j, k)-th entry of Ĉ0(u) and 1(·) is an indicator function and
t0(u) is a positive function of u. The above rate of thresholding is suggested by
Theorem 3.2 in Section 3.4 below. Here, p/h is related to the dimension of an
approximate parametric model to the original model: [a, b] is partitioned into
(b− a)/h intervals in which the p-dimensional nonparametric model are approx-
imated by a p(b− a)/h-dimensional step model. Note that unlike the covariance
matrix, the correlation matrix is scale-invariant and with homogenous diago-
nals. Therefore, the thresholding correlation matrix is expected to make fewer
errors than thresholding covariance matrix, see the comparisons in Figures 3.6(a)
and 3.6(b). Note that in tNCM0, we applied threshold to the estimated correlation
matrix. Here, to investigate the advantage of tNCM0 over its variation, we consider
thresholding the estimated covariance matrix instead of the estimated correlation
matrix. The following figures demonstrate that thresholding correlations is sub-
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stantially better than thresholding covariances.
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Note: tNCM0CovTh(u) and stNCM0CovTh(u) are tNCM0(u) and stNCM0(u)
with covariance threshold respectively. These four estimators are applied to
90 datasets generated from the Setting 1 with n = 100 and p = 100, where
u = −1.05 + k/10, k = 1, . . . , 20.

Figure 3.6: Box-plots of The Frobenius Norm Loss Comparison

In particular, when individual variances σkk(u), 1 ≤ k ≤ p differ from each
other (Cai & Liu, 2011). Using the above estimators, we construct a plug-in
estimator of Σ(u) in form of Σ̂(t)(u) = Q̂0(u)Ĉ

(t)
0 Q̂0(u).

Thresholding level for Ĉ(t)(u). Following Bickel & Levina (2008a), we split the
sample into two sub-samples called trial and testing samples and select the thresh-
old by minimizing the Frobenius norm of the difference between the trial-sample-
based thresholding estimator and the testing-sample-based covariance matrix.
Specifically, we divide the original sample into two samples at random of size n1

and n2, where n1 = n(1−1/ log(n)) and n2 = n/ log(n), and repeat this N1 times.
Here, we set N1 = 100 as the default value according to our numerical experience.
Let Ĉ1,s(u) and Ĉ2,s(u) be the plug-in estimators based on n1 and n2 observations
respectively with the bandwidth selected by the leave-one-out cross validation.
Let Ĉ(t)

1,s be the thresholding estimator derived from Ĉ1,s(u) with the thresholding
level t0(u). Given u, we select t0(u) by minimizing N−1

1

∑N1

s=1 ‖Ĉ
(t)
1,s − Ĉ2,s‖F .

3.3.4 Shrinkage

In Section 3.4, under sparsity and regularity conditions, we show that under
certain regularity conditions the above thresholding covariance estimator is con-
sistent with the underlying covariance matrix function as n and p tend to infinity.
However, for a finite sample, the proposed estimator may still be ill-conditioned.
To ameliorate it, we propose to shrink Σ̂(t)(u) to the identity matrix Ip, where the
amount of shrinkage is optimized in terms of the Frobenius loss. There are other
covariance shrinkage methods in literature, but most of them are developed for
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estimating covariance models without covariates, see Jolliffe (2002), Bai & Silver-
stein (2010) and references therein. To find the optimal amount of shrinkage, we
first consider a population version, namely a linear combination of Ip and Σ̂(t)(u),
Σ∗(u) = ρaIp + (1− ρ)Σ̂(t)(u), whose expected Frobenius loss E‖Σ∗(u)− Σ(u)‖2F
attains the minimum with respect to 0 ≤ ρ ≤ 1 and a ∈ R. The resulting solu-
tions depend on Σ(u) as well as variability of Σ̂(t)(u). Replacing these unknown
quantities by their estimators, we obtain the following plug-in estimator of Σ(u)
with a data-driven optimal amount of shrinkage:

Σ̂(st)(u) =
β̂2
p(u)

α̂2
p(u) + β̂2

p(u)
p−1tr

(
Σ̂(t)(u)

)
Ip +

α̂2
p(u)

α̂2
p(u) + β̂2

p(u)
Σ̂(t)(u). (3.15)

where
α̂2
p(u) =

∥∥∥Σ̂(t)(u)− p−1tr
(
Σ̂(t)(u)

)
Ip

∥∥∥2
F
,

β̂2
p(u) =

1

p

p∑
j=1

p∑
k=1

n∑
i=1

w2
ih(u)((yij − µ̂j(ui))(yik − µ̂k(ui))− σ̂jk(u))2

×1(|σ̂jk(u)| > t0(u)
√

log(p/h)/(nh)).

Note that α̂2
p(u) is a plug-in bias when we use p−1tr(Σ̂(t)(u))Ip to estimate Σ(u)

while β̂2
p(u) gauges the variability of Σ̂(t)(u) as an estimator of Σ(u). So estima-

tor (3.15) is intended to strike a balance between variability and bias of covariance
estimators. Our idea is general, which can be directly used to improve other non-
parametric covariance matrix estimators including the DCM, see Appendix A for
the detailed derivation.

Finally, we end up with a general procedure for estimating the covariance
matrix.

3.4 Theory

In this section, we develop an asymptotic theory for the proposed estimators
which covers both i.i.d. and non i.i.d. cases and thus is more general than Chen
& Leng (2016). Under certain regularity conditions, the proposed estimators are
shown to be consistent with the underlying matrix function if we let the related
bandwidths be different from each other but have the same convergence rate to
zero.

Let Fk0 and F∞
k0+k be the σ-algebras generated by {(yi, ui) : 1 ≤ i ≤ k0} and
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{(yi, ui) : k0 + 1 ≤ k <∞}. Define

α(k) = max
k0≥1

sup
A∈Fk0

,B∈F∞
k0+k

|P (A)P (B)− P (A ∩B)|.

We assume the following regularity conditions:

(C1) The symmetric kernel function K(·) on R with derivative K ′(·) satisfies

K0 = sup
z
K(z) < +∞, K1 = sup

z
|K ′(z)| < +∞,∫

K(z)dz = 1,

∫
zK(z)dz = 0,∫

z2K(z)dz < +∞,
∫
|z|3k(z)dz <∞.

(C2) The density function of U , g(u), has the second order continuous deriva-
tive g′′(·) over a compact support [a, b] and infu∈[a,b] g(u) > 0. For any
i 6= i1, the joint density of ui and ui1 , maxi ̸=i1 supz,z1∈[a,b] gii1(z, z1) is
bounded.

(C3) There exist positive constants τ2 and κ2 < 1 such that for k ≥ 1,

α(k) ≤ exp(−τ2kκ2).

(C4) There exist constants 0 < κ1 ≤ 1, τ1 > 0 such that

max
1≤j≤p

P (|yij| > v) ≤ exp(1− τ1vκ1).

(C5) The second derivatives of µj(u) = E[y1j|U = u], 1 ≤ j ≤ p are uni-
formly bounded in the sense that max1≤j≤p supu∈[a,b] |µ′′

j (u)| <∞.

(C6) The first-order derivatives of σ2
j (u) = E[(yij − µj(ui))

2|ui = u], 1 ≤
j ≤ p, are bounded below from zero uniformly for 1 ≤ j ≤ p and
u ∈ [a, b]. Their first-order derivatives are also uniformly bounded.
The conditional expectations E[(yij − µj(ui))(y(i+t)j − µj(ui+t))|ui =

z, ui+t = z1] with z, z1 ∈ [a, b], 1 ≤ i < ∞, 1 ≤ t ≤ ∞, 1 ≤ j ≤ p, are
uniformly bounded in i, t, z and z1.

The above conditions are routinely used in the literature of nonlinear time series
analysis, see Fan & Yao (2003), Zhang & Liu (2015), and Lam & Yao (2012).
It follows from (C5) that b2 ≜ max1≤j≤p supu∈[a,b] |µj(u)| < ∞. (C3) and (C4)
assume that the response observations have an exponentially fast mixing rate
and sub-exponential tails. Note that these conditions are imposed to facilitate
the proofs and thus may not be the weakest possible for establishing the theory
below.

Let ĝha(u) = 1/n
∑n

i=1Kha(ui − u) be a kernel density estimator of g(u). It
follows from Proposition 0.1 in Supplementary Material in Zhang & Li (2021)
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that ĝha(u) is uniformly consistent with g(u).

Letting 1/γ1 = 1/κ1+1/κ2, we state a uniform consistency result for estimator
µ̂j(u) in the following theorem.

Theorem 3.1. Under Conditions (C1) ∼ (C6), if as n, p→∞ and ha → 0,

(log(p))2/γ1−1/n = O(1),
log(h−4

a np)

(nha log(p/ha))γ1/2
= O(1),

(log(nha log(p/ha)))γ1 log(1/ha)
(nha log(p/ha))γ1(1−γ1)/2

= O(1),

then

max
1≤j≤p

sup
u∈[a,b]

|µ̂j(u)− µj(u)| = Op

√ log(p/ha)
nha

+O(h2a).

Note that 0 < γ1 < 1/2 as κ1 ≤ 1 and κ2 < 1. The above bandwidth
condition imposed on ha holds and

√
log(p/ha)/(nha) = o(1) if ha = c0n

−1/5 and
(log(p))d/n = o(1) for a constant c0 and d = max{1/(2γ1), 2/γ1 − 1}.

Let 1/γ2 = 2/κ1 + 1/κ2. In the next theorem, we show that the entries of
the proposed covariance matrix estimator are consistent with the underlying ones
uniformly in u and indices 1 ≤ j, k ≤ p. We say ha, hv, hr, h → 0 with the same
convergence rate if h/ha+ha/h = O(1), h/hr+hr/h = O(1), h/hv+hv/h = O(1),
0 ≤ v ≤ m. ha, hv, hr, h are different bandwidths of g(u) for different terms in
the proof of Theorem 3.2, see details in Zhang & Li (2021).

Theorem 3.2. Under Conditions (C1) ∼ (C6), if as n, p→∞, ha, hv, hr, h→ 0

with the same rate, for w = 1, 2, log(p)2/γw−1/n = O(1) and

log(nph−4)

(nh log(p/h))γw/2
= O(1),

(log(nh log(p/h)))γw log(1/h)
(nh log(p/h))γw(1−γw)/2

= O(1),

then

max
1≤j,k≤p

sup
u∈[a,b]

|σ̂jk(u)− σjk(u)| = Op

(√
log(p/h)
nh

+ h2

)
,

max
1≤j,k≤p

sup
u∈[a,b]

|ĉjk(u)− cjk(u)| = Op

(√
log(p/h)
nh

+ h2

)
.

Note that 0 < γ2 < 1/3 as κ1 ≤ 1 and κ2 < 1. The bandwidth condi-
tion imposed on ha, hv, hr, h holds and

√
log(p/h)/(nh) = o(1) if ha = c0n

−1/5

(which is the optimal bandwidth for the univariate nonparametric regression es-
timator with c0 a constant) and (log(p))d/n = o(1) for d = max{1/(2γ1), 2/γ1 −
1, 1/(2γ2), 2/γ2 − 1}.
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Put αp(u) = ‖Σ(u)− 〈Σ(u), Ip〉Ip‖F and τnp =
√

log(p/h)/(nh). Let t̂0(u)
be an estimator of the thresholding function t0(u) used in Σ̂(t)(u) and Σ̂(st)(u).
mp(u) = max1≤k≤p

∑p
j=1 I(σkj(u) > 0) denotes a sparsity index of Σ(u). The

smaller mp(u), the sparser Σ(u) is. To state the next theorem, we introduce the
following conditions on separability between Σ(u) and Ip, sparsity and bounds of
Σ(u) respectively.

(C7) τnp/(log(p/h) infu∈[a,b] α2
p(u)) = O(1), supu∈[a,b]mp(u)τnp/αp(u) = o(1).

(C8) There exists a positive constant s1 such that supu∈[a,b] ‖Σ(u)‖ ≤ s1.

(C9) There exists a positive constant s0p such that as p→∞

s0p√
sup

u∈[a,b]
mp(u)τnp

→∞, inf
u∈[a,b]

‖Σ(u)‖ ≥ s0p.

(C10) supu∈[a,b]
∣∣t̂0(u)− t0(u)∣∣ = o(1) and there exist positive constants ta < tb

such that for ta < infu∈[a,b] t0(u) ≤ supu∈[a,b] t0(u) < tb.

Note that Condition (C7) implies that Σ(u) is not close to cIp in a distance less
than the product of the sparsity index and the rate τnp/ log(p/h), where c is any
arbitrary constant. Conditions (C8) and (C9) are about the uniform boundedness
of ‖Σ(u)‖ from above and away from zero in an order of τnp multiplied by the
sparsity index. Finally, we can see from Theorem 3.3 that although (C10) requires
the tuning constant t̂0(u) has a finite limit as n tends to infinity, the order of the
convergence rate of the corresponding estimator Σ̂(st)(u) is independent of such
a limit.

Under these conditions, we state the uniform consistent result for Σ̂(st)(u) as
follows.

Theorem 3.3. Under Conditions (C1) ∼ (C8), if as n, p→∞, ha, hv, hr, h→ 0

with the same rate, and for w = 1, 2, (log(p))2/γw−1/n = O(1), nh5/ log(p/h) =
O(1) and

log(nph−4)

(nh log(p/h))γw/2
= O(1),

(log(nh log(p/h)))γw log(1/h)
(nh log(p/h))γw(1−γw)/2

= O(1),

and if supu∈[a,b]mp(u)τnp = o(1), then uniformly in u ∈ [a, b],∥∥∥Σ̂(st)(u)− Σ(u)
∥∥∥ = Op(mp(u)τnp).

In addition to the above conditions, if Condition (C9) holds, then uniformly in
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u ∈ [a, b],

∥∥∥Σ̂(st)(u)Σ−1(u)− Ip
∥∥∥ = Op

(
mp(u)τnps

−1
0p

)
= op

(√
mp(u)τnp

)
,∥∥∥∥Σ(u)(Σ̂(st)(u)

)−1

− Ip
∥∥∥∥ = Op

(
mp(u)τnps

−1
0p

)
= op

(√
mp(u)τnp

)
,∥∥∥∥(Σ̂(st)(u)

)−1

− Σ−1(u)

∥∥∥∥ = Op

(
mp(u)τnps

−2
0p

)
= op(1).

Finally, in addition to the above conditions, if Condition (C10) holds, then the
above results continue to hold after replacing t0(u) by t̂0(u) in Σ̂(t)(u) and Σ̂(st)(u).

Note that if h = c0n
−1/5 (c0 is a constant) and for d = max{1/(2γ1), 2/γ1 −

1, 1/(2γ2), 2/γ2−1}, (log(p))d/n = o(1), the above condition imposed on h holds.
Note that the above bandwidth assumption that they have the same convergence
rate to zero does not rule out these bandwidths are different. However, the cross-
validation (or the so-called subset) selected bandwidths may not tend to zero. In
particular, some of these bandwidths may tend to infinity when there are many
zeros and a few non-zeros in the underlying covariance matrix. In this situation,
simulation studies in the next section show that the proposed estimators could
reduce the bias and outperformed the DCM in terms of integrated mean squared
errors. The theoretical development along this aspect will be spelled out in a
future paper. All the details of proofs of the above the theorems can be found
in Zhang & Li (2021) and the online Supplementary Material.

3.5 Numerical Studies

In this section, to demonstrate the merits of the proposed estimators in finite
sample settings, we apply the proposed procedure to both synthetic and real
dataset. We present the numerical results for the proposed estimators using m

band matrix factors.

To facilitate the presentation, let tNCM0 and stNCM0 denote the proposed esti-
mators Σ̂(t)(u) and Σ̂(st)(u) respectively with m = 0. Let tNCM1 and stNCM1 denote
the proposed estimators Σ̂(t)(u) and Σ̂(st)(u) respectively with m = 1. Let DCM1

and DCM2 denote two DCM estimators defined by

DCM1(u) = (σ̂1jk(u)I(σ̂1jk(u) ≥ d(u)))1≤j,k≤p,

DCM2(u) = (σ̂2jk(u)I(σ̂2jk(u) ≥ d(u)))1≤j,k≤p,
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where d(u) is the level of thresholding and

Σ̃1(u) =
n∑

i=1

wih(u)(yi − µ̂(ui))(yi − µ̂(ui))
T ≜ (σ̂1jk(u))1≤j,k≤p,

Σ̃2(u) =
n∑

i=1

wih(u)(yi − µ̂(u))(yi − µ̂(u))T ≜ (σ̂2jk(u))1≤j,k≤p.

Note that DCM1 differs from DCM2 in the way of estimating the residuals, see the
discussion in Section 3.2.1. So, DCM1 is expected to perform better than DCM2.
Following the same procedure as in stNCM0, we improve DCM1 by incorporating the
effects of shrinkage on it. Let sDCM1 denote the optimal shrinkage estimator after
replacing tNCM0 by DCM1 in the definition of stNCM0. As for the tuning parameters
for estimating DCM, we follow the method in Chen & Leng (2016), i.e., the
bandwidth h and the level of thresholding of the DCM estimators in (3.3) are
determined by the so-called subset and sample-splitting approaches respectively.

3.5.1 Criteria for Performance Assessment

We need a criterion to evaluate the performance of a nonparametric covari-
ance matrix estimator. There are multiple possible criteria, but one particularly
convenient choice is integrated root-squared error (IRSE). For any estimator Ψ̂(u)

of Σ(u), u ∈ [a, b], the IRSE is defined as

IRSE(Ψ̂) =

∫ b

a

∥∥∥Ψ̂(u)− Σ(u)
∥∥∥
F

du ≈ 1

K0

K0∑
k=1

∥∥∥Ψ̂(vk)− Σ(vk)
∥∥∥
F
, (3.16)

where vk, 1 ≤ k ≤ K0 are grids evenly distributed over the interval (a, b). In
the following, we set K0 = 20 for (a, b) = (−0.95, 0.95). In our study, we also
consider a spectral-norm based IRSE . As they are similar to the Frobenius version,
the results are put off in Appendix A.2.

We also evaluate the performance of the proposed procedure in discovering
zero entries in the covariance matrix. Let p1 (p2) be the number of nonzero
(zero) entries in Σ(u). For any estimator Ψ̂(u) of Σ(u), let n11 be the number of
true discoveries of nonzero entries in Σ(u) by Ψ̂(u). Similarly, let n22 denote the
number of true discoveries of zero entries in Σ(u) by Ψ̂(u). Let SEN, SPE and ACC

denote sensitivity, specificity and accuracy in the above tests, namely,

SEN =
n11

p1
, SPE =

n22

p2
, ACC =

n11 + n22

p1 + p2
.
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3.5.2 Synthetic Data

In this subsection, we carry out a set of simulation studies. We consider three
settings for µ(u) and Σ(u) in our simulations.

Setting 1: Following Yuan & Cai (2010) and Chen & Leng (2016), we set
µ(u) and Σ(u) as follows. Let µ(u) = (µ1(u), . . . , µp(u))

T with

µj(u) =
50∑
k=1

(−1)k+1

k2
Zjk cos(kπu), 1 ≤ j ≤ p,

where {Zjk : 1 ≤ j ≤ p, 1 ≤ k ≤ 50} is an independent sample drawn from
the uniform distribution over [−5, 5]. Let Σ(u) = {σij(u)}1≤i,j≤p with σij(u) =

exp(u/2)[{ϕ(u) + 0.1}I(|i − j| = 1) + ϕ(u)I(|i − j| = 2) + I(i = j)] and ϕ(u)

is the standard normal density. Note that Diag(Σ(u)) = exp(u/2)Ip is spherical
and the correlation matrix C0(u) = (cij(u))1≤i,j≤p with cij(u) = I(|i − j| =
1) + ϕ(u)I(|i − j| = 2) + I(i = j) which is equal to zero when |i − j| ≥ 3.
Therefore, C0(u) is sparse as it is a band matrix with bandwidth 2.

Setting 2: Following Zhang & Liu (2015), let µ(u) = (µ1(u), . . . , µp(u))
T

with

µj(u) = Zj exp
(
(u− τj)2

4

)
sin(2π(u− τj)), 1 ≤ j ≤ p,

where Zj, j = 1, . . . , p are independently drawn from the uniform distribution
U(−5, 5), τ = (τ1, . . . , τp) is a row vector of p evenly spaced points between
−1 and 1. Set Σ(u) = {σij(u)}1≤i,j≤p with σij(u) = exp(u/2)ϕ(u)|i−j|. Note
that Diag(Σ(u)) = exp(u/2)Ip is spherical and the correlation matrix C0(u) =

(cij(u))1≤i,j≤p with cij(u) = ϕ(u)|i−j|. Therefore, cij(u) is decreasing exponentially
fast but is not sparse.

Setting 3: Let µ(u) be the same as that in Setting 1. Let Σ(u) =

AT (u)A(u), where the (i, j)-th entry of A(u) equals

aij(u) = exp
(
u sin(ij)

2

){
[sin(πu) + 0.1] I(|i− j| = 1)

+ sin(πu)I(|i− j| = 2) + I(i = j)

}
.

Note that Diag(Σ(u)) = diag(
∑p

j=1 a
2
ij(u) : 1 ≤ i ≤ p) is not spherical. C0(u) is

sparse as it is a band matrix with bandwidth 4.

For each combination of (n, p) with n = 100, 200, 500 and p = 50, 100, 150,
300, 500, we repeat the experiment 90 times, generating 90 datasets of (yi, ui),
1 ≤ i ≤ n. Each dataset is obtained in two steps. In Step 1, we independently
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draw ui, i = 1, . . . , n from the uniform distribution U(−1, 1). In Step 2, for each
given ui, we draw yi from the covariance model yi = µ(ui) + Σ(ui)

1/2εi, where
εi, i = 1, . . . , n are iteratively drawn from the vector VAR(1) model

ε0 = ξ0, εi = ρεi−1 + ξi, i = 1, . . . , n,

with 0 ≤ ρ < 1 and ξk, k = 0, 1, . . . are independently sampled from the standard
p-dimensional normal N(0, Ip). We consider ρ = 0, 0.3, 0.8.

For each combination of (n, p, ρ), we apply the tNCMm, stNCMm (m = 0, 1),
DCM1, sDCM1 and DCM2 to each of 90 datasets and calculate their IRSE values
and (SEN, SPE, ACC) values. The mean and standard error of these values are
displayed in Figure 3.7, Table 3.1 below and Tables A.1 ∼ A.26 in Appendix A.2
respectively.
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Figure 3.7: Comparison Between stNCM1 and sDCM1 (Setting 1, n=100, ρ = 0)

The results can be summarized as follows:

• On average, the Frobenius norm-based IRSE loss of each procedure is in-
creasing in the dimension p and in the degree of serial correlation ρ while
decreasing in sample size n.

• The degrees of sparsity and diagonal homogeneity in Σ(u) have an effect
on the performance of these four procedures. For example, when (n, p, ρ) =

(100, 300, 0), compared to the results in setting 1, the Frobenius norm-based
IRSE loss of stNCM0 in setting 2 increases by 84%. This is not surprising as the
degrees of sparsity and diagonal homogeneity in setting 2 lead to a higher
dimensionality (i.e., the number of effective parameters in the model) than
that in setting 1.

• Among the seven procedures, stNCM1 performs best in all three settings,
followed by stNCM0, tNCM1, tNCM0, sDCM1, DCM1 and DCM2. In particular, the
performance of DCM2 is substantially worse than its competitors (see Sec-
tion 3.2.1). For example, for (n, p, ρ) = (100, 300, 0), in setting 1, compared
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to DCM2, on average DCM1 reduces the Frobenius norm-based IRSE loss by
99%. Compared to DCM1, on average tNCM0 and stNCM0 reduce the Frobe-
nius norm-based IRSE loss by 23% and 25% respectively. tNCM1 and stNCM1

perform slightly better than tNCM0 and stNCM0 in some settings. Compared
to tNCM0, on average stNCM0 reduces the Frobenius norm-based IRSE loss by
3%. In setting 2, compared to DCM1, on average tNCM0 and stNCM0 reduce
the Frobenius norm-based IRSE loss by 12% and 16% respectively. tNCM1

and stNCM1 perform slightly better than tNCM0 and stNCM0. Compared to
DCM2, on average DCM1 reduces the Frobenius norm-based IRSE loss by 99%.
Compared to tNCM0, on average stNCM0 reduces the Frobenius norm-based
IRSE loss by 3%. In setting 3, compared to DCM1, on average tNCM0 and
stNCM0 reduce the Frobenius norm-based IRSE by 14% and 15% respectively.
Compared to DCM2, on average DCM1 reduces the loss by 94%. Compared
to tNCM0, on average stNCM0 reduces the Frobenius norm-based IRSE loss by
2%. tNCM1 and stNCM1 perform substantially better than their counterparts
tNCM0 and stNCM0. A similar conclusion can be made for dependent samples
when ρ = 0.3 and 0.8. In particular, the optimal shrinkage can reduce the
serial correlation effect on the proposed procedures stNCM0 and stNCM1. Fur-
thermore, Spectral norm-based IRSE has the same performance as Frobenius
norm-based IRSE, see Tables A.18 ∼ A.26 in Appendix A.2.

• Similar results are obtained in terms of ACC, see Tables A.9 ∼ A.17 in
Appendix A.2.

• The CPU-time costs of tNCMm and stNCMm, m = 0, 1, are less than those of
DCM1 and DCM2. As example, for the 90 datasets simulated in setting 1 with
n = p = 100, the CPU time required by DCM1, sDCM1, DCM2, tNCMm and
stNCMm, m = 0, 1 to estimate the covariance matrix function are reported
in Figure 3.1.

3.5.3 Asset Return Data

Capital asset pricing model (CAPM) is a model that describes the relationship
between systematic risk and expected return for assets, which is widely used
throughout finance for the pricing of risky assets. However, the assumption that
asset returns are linearly related to the market return is imposed on the model.
The primary goal of this study is to extend the CAPM to the nonlinear setting.
In particular, we are interested in how the volatility and co-volatility of a group
of asset returns depend on the market return.

For this purpose, from the database of Yahoo Finance1, we have collected
monthly return data of 75 assets across 8 sectors over three time-periods, namely,

1https://finance.yahoo.com/?guccounter=1

https://finance.yahoo.com/?guccounter=1
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before-financial-crisis period from 02/2001 to 01/2007, in-financial-crisis period
from 02/2007 to 01/2010 and after-financial-crisis period from 02/2010 to 12/2017.
The sector distribution of these assets is listed as follows. Technology: AAPL,
AMD, HPQ, IBM, IIN, INTC, LNGY, LOGI, MSFT, NTAP, NVDA, SNE, TACT
and WDC. Health care: AET, AMGN, AZN, BAX, CVS, GILD, GSK, HUM,
IMMU, JNJ, LLY, MRK, NVS, PFE, TECH and UNH. Energy: BP, CVX, OXY,
RDS-B, SU and XOM. Financial services: C, GS, HSBC, JPM, MS, PGR, RF and
THG. Communication services: SHEN, T and TEO. Consumer defensive: BIG,
DLTR, FRED, KO, TGT, TUES, UN and WMT. Consumer cyclical: AMZN,
EMMS, KSS, SIRI and TM. Industrial: BA, CAJ, DY, EME, FIX, GE, GVA,
IR, MMM, MTZ, PWR, SKYW, UPS, UTX and VMI. We have also collected
the index return of S&P 500 which is treated as the market’s return.

We apply the proposed stNCM0 and stNCM1 to the data for each time-period,
obtaining almost the same result. Here, we report the corresponding estimates for
mean µ(u) and covariance matrix Σ(u). Note that the diagonals of estimated Σ(u)

show the volatility of individual returns while estimated correlation coefficient
matrix C0(u) captures cross-sectional relationships in these returns.

We plot the estimated individual mean functions and the estimated volatility
functions in Figures A.1–A.3, revealing a number of assets which have nonlinear
relationships to the market return. The degree of this non-linearity significantly
decreases after financial crisis, indicating that the CAPM fitted to the market is
better than that before the financial crisis, see Zhang & Li (2021) and the online
Supplementary Material for more details. Figures A.1–A.3 also show that the
individual volatility of the assets increases a lot during the financial crisis period
but returns to normal after the financial crisis. The pattern of the dependence of
the volatility on the market also changes a lot after financial crisis: Changes from
non-constant volatility functions before the financial crisis to almost constant
volatility functions after the financial crisis. We have also investigated effects
of the financial crisis on the co-volatility of the selected assets by the estimated
nonzero correlation coefficient functions. By use of the estimated covariance
matrix functions, in each time-period, we have identified the associated pairs of
assets that are of nonzero market-dependent conditional correlation coefficients
(and nonzero conditional co-volatility).

We further conduct asymptotic tests for significance of co-volatility for these
pairs as follows. For any pair of assets (a, b), let Corr(a,b)(u) denote its correlation
coefficient as a function of u (the market’s return) and with estimator ˆCorr(a,b)(u).
Let F̂(a,b)(u) = 0.5 log((1+ ˆCorr(a,b)(u))/(1− ˆCorr(a,b)(u))) be Fisher’s Z transfor-
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mation. To test H0 : Corr(a,b)(u) = 0, we consider the test statistics

Avec(a,b) =
n∑

i=1

|F̂(a,b)(ui)|/n ≈ N
(
E[|F(a,b)(U)|],Var(|F(a,b)(U)|)/n

)
,

and calculate the approximate P-value

P

(√
nAvec(a,b)/

√
V̂ar(Corr(a,b)(U))

∣∣∣N(0, 1)

)
,

where the sample variance of |F̂(a,b)(ui)|, 1 ≤ i ≤ n is denoted by V̂ar(|F(a,b)(U)|)
and P (·|N(0, 1)) is the cumulative distribution function of the standard normal
N(0, 1). Then, even after Bonferroni correction for multiple testing, these P-
values are all significant (< 10−2) for the above selected pairs of assets. The final
list of significant pairs are as follows:

• Before-financial-crisis. There are 1, 14, 1 pairs existed within Technology,
Energy and Consumer-Defensive respectively.

• In-financial-crisis. There are 4, 1, 8, 1, 4, 1, 1, 1, 1 pairs of correlated as-
sets presented within Technology, Industrial, Energy, Consumer Defensive,
Health Care and Financial Services respectively. Also, there is a pair of
correlated assets belonging to different sectors: Industrial and Consumer
cyclical, Consumer Cyclical and Consumer Defensive, and Financial Service
and Industrial.

• After-financial-crisis. There are 3, 2, 10, 1, 11, and 12 pairs of assets within
Technology, Industrial, Energy, Consumer defensive, Health care, and Fi-
nancial services. There are 1, 1, 1, 1 and 2 pairs of assets between Financial
service and Industrial, between consumer defensive and Financial services,
between Consumer cyclical and Consumer defensive, between Technology
and Industrial, and between Health Care and Consumer Defensive.

The results indicate that before financial crisis, there are only 16 significant
within-sector co-volatility connections among these assets. In particular, there are
no significant cross-sectional co-volatility connections among these assets. The
number of co-volatility assets within and across sectors is significantly increas-
ing during and after financial-crisis: The number of within-sector co-volatility
connections increases from 16 to 22 during the financial crisis period and to 37

after the financial crisis. The number of between-sector co-volatility connections
increases from 0 to 3 during the financial crisis period and to 7 after the financial
crisis. This implies that in response to the financial crisis, the financial market
has been more closely integrated than before the financial crisis.
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3.6 Discussion and Conclusion

Estimating covariate-dependent covariance matrix Σ(u) of a high-dimensional
response vector poses a big challenge to contemporary statistical research. The
existing kernel methods in Chen & Leng (2016) and Yin et al. (2010) might not
be flexible enough to capture varying smoothness across key parts of the ma-
trix as they used a single bandwidth for the entries of Σ(u). Here, we have
proposed a novel estimation procedure to overcome this obstacle, based on a
variance-correlation factorization of Σ(u), namely Σ(u) = Q0(u)C0(u)Q

T
0 (u),

where Q0(u) = Diag(Σ(u))1/2 and the correlation matrix function C0(u) is fur-
ther factorized into the product of multiple band matrices. The proposal has
been implemented in two steps. In Step 1, we obtain robust estimators Q0(u)

and C0(u) by use of separate bandwidths for band matrices, followed by thresh-
olding entries of the estimated C0(u). In Step 2, we substitute these estimators
in the above factorization formula to obtain a plug-in estimator, followed by an
optimal shrinkage based on Frobenius norm.

We have conducted a set of simulations to demonstrate that the new proposal
outperforms the existing DCM approach in terms of estimation loss and CPU-
time cost. To illustrate our new proposal, we have applied it to a dataset of
asset returns. We have developed a nonparametric capital asset pricing model
to capture volatility and co-volatility among these risky assets. It shows that
under some sparsity conditions, the proposed estimator is consistent with the
underlying covariance matrix as both the sample size and the dimension tend to
infinity. There are a few important topics which are remained to address but
beyond the scope of this chapter, such as nonparametric nonlinear shrinkage.



Chapter 4

Divide-and-Combine Estimation
of High-dimensional
Nonparametric Covariance
Models

4.1 Introduction

In Chapter 3, we have developed a factorized estimator of nonparametric
covariance model. In this chapter, we will continue discussing the approaches that
can further improve the estimation of nonparametric covariance model. Firstly,
let us review the model in Chapter 3 again. Let Y = (Y1, . . . , Yp)

T ∈ Rp be
a p-dimensional random vector and U ∈ R be the associated random variable.
Denote µ(u) = E[Y|U = u] and Σ(u) = cov(Y|U = u) as the conditional mean
and covariance matrix of Y given U = u. Each component of µ(u) and Σ(u) is
assumed to be an unknown smooth function of u. Suppose that (yi, ui)

n
i=1 are

random observations from the model yi = µ(ui) + Σ(ui)
1/2εi, i = 1, . . . , n where

εi represents the noise.
As mentioned in Chapter 3, Chen & Leng (2016)’s method did not consider

the effects of sparsity on the bandwidth selection, their covariance matrix estima-
tion procedure includes two steps: the first step is bandwidth selection using the
so-called subset-y-variables method; the second step is threshold using Bickel &
Levina (2008b)’s method. The pilot study in Section 3.2.4 clearly illustrates how
the zero entries in covariance matrix affect the bandwidth selection. In Chapter 3,
we have proposed the factorized estimation of high-dimensional nonparametric
covariance model which can solve the zero entries problem. Our factorized NCM
includes five steps: standardization, factorization, bandwidth selection, threshold
and shrinkage. Among these five steps, the factorization step plays a significant

62
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role in solving zero entries problem by letting each factor Qk(u), k = 1, . . . ,m

own unique bandwidth, see the discussion in Section 3.3.

Generally, the estimator Σ̂(u) does not perform well given p ⪆ n as it can
generate the estimation error (Kan & Zhou, 2007). The main reason is that
there exist many unknown parameters in Σ(u) to be estimated but using only
the finite observations. To eliminate this issue, Zou et al. (2017) pointed out that
sparsity assumption is frequently imposed on either covariance matrix (Huang
et al., 2006; Bickel & Levina, 2008b) or its precision matrix (Dempster, 1972;
Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007; Friedman et al., 2008).
Bickel & Levina (2008b)’s threshold approach is used both in DCM and our
factorized NCM methods. However, we notice that the threshold step is just
following the bandwidth selection step in the DCM and our factorized NCM
methods, this implies the zero entries still have effect on the bandwidth selection
of nonzero entries.

Wang & Kolar (2014) proposed a method to implement bandwidth selection
and zero entries identification simultaneously. They imposed the group graphical
lasso penalty (Yuan & Lin, 2007) on Σ(u) during the bandwidth selection step.
To be concrete, the criterion of estimating the inverse matrix of Σ(ui) is

min
{Ω(ui)≻0}

n∑
i=1

[
tr
(
Σ̂(ui)Ω(ui)

)
− log |Ω(ui)|

]
+ λ

∑
j1 ̸=j2

√∑n

i=1
Ω2

j1j2
(ui), (4.1)

where Ω(ui) represents the matrix inversion of Σ(ui), Ωj1j2(ui) is the entry located
in j1-th row and j2-th column of Ω(ui) and item

∑
j1 ̸=j2

√∑n
i=1 Ω

2
j1j2

(ui) is called
the group graphical lasso penalty. Even though they proposed criterion (4.1),
they did not select the optimal bandwidth via (4.1) in practice, because cross-
validation and optimizing the penalty in high-dimensional setting will dramati-
cally increase the computational complexity. They directly set h = n−1/5 in (4.1)
and concentrated on the penalty part throughout their research.

In this chapter, we propose the Divide-and-Combine estimation approach for
both mean function and covariance matrix function. The key idea of Divide-and-
Combine approach for the nonparametric covariance matrix is to identify the
locations of zero entries before the bandwidth selection of the nonzero entries.
To be concrete, our technical route has three steps:

1. The diagonal entries are estimated by using the local linear smoother, once
we obtain the diagonal estimators, we can standardize the covariance matrix
to get the correlation coefficient matrix.

2. We now only focus on the off-diagonal entries. There are p(p − 1)/2 non-
diagonal pairs (j1, j2),1 ≤ j1 < j2 ≤ p need to be identified. We assume
that the positions of zero entries do not change with the condition ui, i =



Chapter 4. Divide-and-Combine Estimation of NCM 64

1, . . . , n. If the underlying correlation coefficient ρj1j2(·) = 0 for ui, i =

1, . . . , n at one specific pair (j1, j2), then we can carry out the multiple
null hypothesis: ρj1j2(·) = 0. If we can not reject the null hypothesis at
the significant level α, it is reasonable to treat this specific location (j1, j2)

as zero entry; otherwise, nonzero entry. This procedure is implemented
just one time for one pair (j1, j2). There are p(p− 1)/2 non-diagonal pairs
need to be tested using the same procedure. Typically, this is a multiple
hypothesis testing, we use false discovery rate (FDR) here to keep the Type
I error under an appropriate level. So far, we can identify the zero entries
and nonzero entries.

3. Once obtaining the locations of nonzero entries, one can choose the band-
width using nonparametric method based on the nonzero entries. Combin-
ing the main diagonal entries’ estimators and off-diagonal nonzero entries’
estimators, we can easily obtain the covariance matrix estimator. One can
use shrinkage method (Ledoit & Wolf, 2004) or the method in Chen & Leng
(2016) to make this covariance matrix estimator positive definite.

Next, we discuss the Divide-and-Combine method in the estimation of mean
function.

4.1.1 Divide-and-Combine Estimation of Mean Function

In Chapter 3, we employ the local constant smoother (Nadaraya, 1964) to es-
timate both mean function and covariance matrix function. Fan & Gijbels (1996)
suggested using the local linear smoother due to its minimax efficiency and the
advantage of boundary effect auto-correction. However, if the components of un-
derlying mean function consist of both the linear and nonlinear functions of u,
then the common bandwidth of the component functions is sensitive to the pro-
portion of linear functions. For example, if the mean function µ(u) is composed
of linear functions (including constant functions), then the common bandwidth
of local linear smoother will go to infinity (e.g., Fan & Gijbels, 1996, p. 20) as
the linear functions dominate the convergence of bandwidth. From now on, we
call each component of µ(u) as entry-wise function (EWF) with respect to u.

To solve the problem of infinite bandwidth, we first try to detect the linear
and nonlinear EWFs of µ(u), then split them into two groups: one is linear, and
the other is nonlinear. For the linear EWFs of µ(u), we directly use ordinary
least square to evaluate them. For the nonlinear EWFs of µ(u), we employ local
linear smoother to estimate them. Hence, the key question is how to detect the
linear EWFs of µ(u) based on the observations.

We notice that Fan et al. (2001) proposed a generalized likelihood ratio statis-
tic method, one application of this method is linearity test based on nonparamet-
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ric maximum likelihood ratio statistic. The basic idea of generalized likelihood
ratio statistic can be described as follows. Consider the null hypothesis:

H0 : m(x) = α0 + α1x v.s. H1 : m(x) 6= α0 + α1x,

where x is a univariate variable, α0 and α1 are unknown parameters. Let m̂h(xi)

be the local linear fits and h is the nominal bandwidth, then generalized likelihood
ratio test is given by

λn =
n

2
log RSS0

RSS1

,

where RSS0 =
∑n

i=1 (yi − α̂0 − α̂1xi)
2 and RSS1 =

∑n
i=1 (yi − m̂h(xi))

2. Under
the null hypothesis, one obtains

rKλn ∼ χ2
aK
,

where aK is the degrees of freedom and rK is a positive constant. For more
details, see Fan et al. (2001).

Suppose that we have obtained the linear and nonlinear EWFs, denote them
as
(

y(1)
i

)
,
(

y(2)
i

)
, i = 1, . . . , n respectively, where y(1)

i is p1-dimensional column

vector and y(2)
i is p2-dimensional column vector. p1 and p2 satisfy p1 + p2 = p.

The linear EWFs are estimated directly by µ̂(1)(ui) = α̂ + β̂ui, where α̂, β̂ are
OLS estimators respectively. For the nonlinear EWFs, let h1 be the bandwidth
of kernel function. By the local linear smoother, the estimator can be expressed
as

µ̂(2)(u) =

∑n
i=1wh1(ui − u)y

(2)
i∑n

i=1wh1(ui − u)
, (4.2)

where wh1(ui − u) = Kh1(ui − u)[Sn,2 − (ui − u)Sn,1] represents the equivalent
kernel, and Sn,j =

∑n
i=1Kh1(ui − u)(ui − u)j, j = 1, 2. To demonstrate this

idea, we set up a simple simulation in Section 4.2.1, Figure 4.5(a) shows that
dividing the mean function estimation procedure into two steps performs better
than estimating the mean function directly.

This idea is inspired by the computer algorithm divide-and-conquer (Cormen,
2009). We divide the mean function estimation into two sub-problems, then
estimate each separately. Furthermore, we also apply this idea to the estimation
of nonparametric covariance matrix, see the discussion in the previous subsection.
Throughout this chapter, we call it Divide-and-Combine framework. Besides the
Divide-and-Combine estimators of mean function and nonparametric covariance
matrix, we also propose a nonparametric estimation of correlation coefficient by
solving a cubic equation of correlation coefficient which will be discussed later.
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4.1.2 Nonparametric Estimation of Correlation
Coefficient

To demonstrate the motivation, we set up a simple example: Supposing u ∈
[−1, 1] and the distribution of (X1, X2) be a bivariate normal distribution,

N

0

0

 ,

 1 ρ(u)

ρ(u) 1

 ,

where ρ(u) = 1− 2u2. Let n = 200, ui, i = 1, . . . , n are randomly drawn from the
uniform distribution U(−1, 1). For each ui, observation (xi1, xi2) is one random
sample the above bivariate normal distribution. Given u = u0, one can directly
obtain the following nonparametric correlation coefficient estimator:

ρ̂(u0) =

∑n
i=1 xi1xi2Kh(ui − u0)∑n

i=1Kh(ui − u0)
. (4.3)

However, estimator (4.3) may be larger than 1 or smaller than -1, for example,
see Figure 4.1. Hence, we need to impose a constraint on (4.3) to guarantee
ρ(u0) ∈ [−1, 1], ∀ u0 ∈ [−1, 1]. We notice that the kernel weighted likelihood
function of bivariate normal distribution at u = u0 can be expressed as

L =
n∑

i=1

{
x2i1 + x2i2 − 2ρ(u0)xi1xi2

1− ρ2(u0)
+ log

(
1− ρ2(u0)

)}
Kh(ui − u0).

Let ∂L/∂ρ(u0) = 0, after some simple calculations, we get the so-called cubic
equation of correlation coefficient as follows:

ρ3(u0)− B(u0)ρ
2(u0) + [A(u0)− 1]ρ(u0)− B(u0) = 0, (4.4)

where

A(u0) =

∑n
i=1 [x

2
i1 + x2i2]Kh(ui − u0)∑n
i=1Kh(ui − u0)

, B(u0) =

∑n
i=1 xi1xi2Kh(ui − u0)∑n

i=1Kh(ui − u0)
.

Especially, if A(u0) = 2, one real root of (4.4) is equal to B(u0). Kendall et al.
(1973) pointed out that there is at least one real root of equation (4.4) lying in the
interval [−1, 1]. The details of bandwidth selection and roots of equation (4.4)
are put off in Section 4.2.2. For each ui, we can obtain two estimators: (4.3) and
the real root of (4.4). We repeat the above simulation 100 times. Figure 4.1 sum-
marizes this comparison study. The blue solid line represents the underlying cor-
relation coefficient function. Each point of the red dash-dot line in Figures 4.1(a)
and 4.1(b) represents the average of 100 estimators of (4.3) or (4.4). The grey
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ribbons in Figures 4.1(a) and 4.1(b) are bounded by the maximum and minimum
of 100 estimators of (4.3) and (4.4) respectively.

(a) Estimator (4.3) (b) The real root of (4.4)

Figure 4.1: The Comparison of Two Correlation Estimators.

Apparently, the correlation coefficient estimated by (4.3) could be greater
than 1 or smaller than -1 while the real root of (4.4) are definitely lying in [−1, 1]
as shown in Figure 4.1(b). Even comparing the red dash-dot lines in Figures 4.1(a)
and 4.1(b), the real root of (4.4) still preforms better than estimator (4.3).

Our Divide-and-Combine estimation for high-dimensional nonparametric co-
variance models needs to identify the zero entries based on the correlation matrix,
see Section 4.2.2. To avoid the potential risk of estimator (4.3), we adopt the real
root of cubic equation (4.4) as our nonparametric correlation coefficient estimator
throughout this chapter.

The simulation result shows that our method is not only efficient for the
sparse covariance matrix but also for the full covariance matrix. For example,
the underlying full covariance matrix in scenario 4 decays at the exponential rate,
however both the Frobenius norm-based IRSE and spectral norm-based IRSE
are still less than those using the NCM method. In the previous paragraph, we
assume the position of zero entries do not change with ui. To evaluate the effect
of varying-zero-position, we also design the scenario 6, the result illustrates that
our method also performs well under this circumstance. Even the assumptions
are not satisfied in scenario 4 and 6, our method still performs better. This is
not surprising because through identifying zeros entries, the nonzero entries again
play the main role in bandwidth selection. It also indicates that we do not need
to identify the zeros entries exactly, we just need to control the zero entries effect
below an acceptable tolerance. In essence, our method reduces the influence of
zero entries so that the nonzero entries can take over the bandwidth selection.

The rest of this chapter is organized as follows: Section 4.2 shows the details
of our three-step nonparametric covariance model. Simulation studies and a real
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finance example are given in Section 4.3 and Section 4.4 while Section 4.5 con-
cludes Chapter 4 with discussions. The detail of simulation results can be found
in Appendix B. An R package is also developed on GitHub1.

4.2 Methodology

We briefly review our model. Let Y = (Y1, . . . , Yp)
T ∈ Rp be a p-dimensional

random vector and U ∈ R be the associated random variable. Denote µ(u) =

E[Y|U = u] and Σ(u) = cov(Y|U = u) as the conditional mean and covariance
matrix of Y given U = u. Each component of µ(u) and Σ(u) is assumed to be an
unknown smooth function of u. Suppose that (yi, ui)

n
i=1 are random observations

from the following model

yi = µ(ui) + Σ(ui)
1/2εi, i = 1, . . . , n,

where µ(ui) = (µ1(ui), . . . , µp(ui))
T and (ui)

n
i=1 is an independent random sample

of U . Also, given (ui)
n
i=1, εi’s are dependent on each other and with zero means

and identity matrices (i.e., E[εi|ui] = 0p, cov(εi|ui) = Ip and E[εiε
T
j ] 6= 0, i 6= j).

Let K(u) be a kernel function, Kh(u) = h−1K(u/h) be the scaled kernel function
with bandwidth h > 0 and wh(ui − u) = Kh(ui − u)/

∑n
k=1Kh(uk − u) be the

weight function. Yin et al. (2010) considered the following kernel estimators of
µ(·) and Σ(·):

µ̂(u) =
n∑

i=1

wh(ui − u)yi,

Σ̂(u) =
n∑

i=1

wh(ui − u) [yi − µ̂(ui)] [yi − µ̂(ui)]
T ≜ (σ̂j1j2(u))1≤j1,j2≤p,

under independent and n > p conditions where h is a nominated bandwidth for
both mean and covariance matrix functions.

We aim to use Divide-and-Combine method to estimate both conditional
mean function µ(u) and conditional covariance matrix Σ(u). In this section, we
will introduce the estimation of mean function followed by a simple example to
illustrate its performance. Thereafter, a new nonparametric covariance model to
reduce the sparsity effects will be developed. Under the sparsity assumption, we
adopt the FDR to keep Type I error under an appropriate level in identifying
zero entries of covariance matrix estimator, then apply the local linear regression
to those nonzero entries to obtain the estimator of covariance matrix.

1This repository (https://github.com/Jieli12/llfdr) is currently private, once this ar-
ticle is accepted online, this package will become open source under GPL-3 Licence.

https://github.com/Jieli12/llfdr
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4.2.1 Mean Function Estimation

We employ the generalized likelihood ratio statistic test to identify the linear
and nonlinear mean functions. For more details of the generalized likelihood
ratio statistic test, see Fan et al. (2001). We still use the notations introduced in
Section 4.2.1. In terms of the bandwidth selection of nonlinear functions, we use
the leave-one-out cross validation method to obtain the bandwidth. Define the
cross validation function as

CV (h1) =
1

np2

l2∑
i=l1

[y(2)
i − µ̂

(2)
−i (ui)]

T
[y(2)

i − µ̂
(2)
−i (ui)],

where l1 = b0.05nc, l2 = b0.95nc and µ̂
(2)
−i (·) represents the duplication of equa-

tion (4.2) without the i-th observation. Finally, combining µ̂(1)(ui) and µ̂(2)(ui),
we can obtain the mean function estimator µ̂(ui).

To demonstrate this idea, we set up a simple simulation. Let n = 200, p =

100. Without loss of generality, the first p1 = 60 EWFs are linear, the rest are
nonlinear. The underlying mean function is yi = µ(µi) + εi, where µ(ui) =(
µ(1)(ui)

T ,µ(2)(ui)
T
)T . The linear EWFs are µ(1)(ui) = α + βui, where α =

0.01 × 1, 1 is a p1 column vector with all entries 1, and β = (β1, . . . , βp1)
T ,

the nonlinear EWFs µ(2)
j (ui) are sin (π (ui + j/p)), j = 1, . . . , p2 and µ(2)(ui) =

(µ
(2)
1 (ui), . . . , µ

(2)
p2 (ui))

T
.

We randomly draw ui from the uniform distribution U(0, 1), β is generated
randomly from the uniform distribution U(0.2, 0.5) and the noise εi is sampled
from the multivariate normal distribution with zero mean and identity matrix.
This procedure is repeated 90 times. We set up two different estimation meth-
ods, denoted as A and B respectively. Method A represents that we estimate the
mean function without dividing the linear and nonlinear EWFs while Method B
represents our Divide-and-Combine framework. For each method, we compute
the average mean square error of mean function, Figure 4.5(a) displays the com-
parison results. Apparently, our new method performs better than Method A.
Furthermore, we also calculate the sensitivity (or true positive rate) of linear
functions identification, the average of 90 sensitivities is 0.9965 which means we
can efficiently detect the linear EWFs by Fan et al. (2001)’s approach.

4.2.2 Covariance Matrix Estimation

4.2.2.1 Identifying Off-diagonal Zero Entries

Without loss of generality, in the rest of this section, we always assume
yi, i = 1, . . . , n is centralized by the Divide-and-Combine mean function esti-
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mator in Section 4.2.1. First, we focus on the off-diagonal zero entries in covari-
ance matrix Σ(u), the diagonal and off-diagonal nonzero entries will be discussed
afterwards. Let (j1, j2), j1 6= j2, 1 ≤ j1, j2 ≤ p denote the row and column in-
dices of one off-diagonal zero entries of Σ(u), u = u1, . . . , un. For given ui, let
ρj1j2(ui) be the conditional correlation of yij1 and yij2 . Clearly, if the (j1, j2)-
entry of Σ(ui), i = 1, . . . , n is 0, i.e., ρj1j2(u1) = · · · = ρj1j2(un) = 0, then we can
treat these correlations as ‘unconditional’ because ui, i = 1, . . . , n does not affect
the value of conditional correlation. This inspires us to employ the hypothesis
test for correlation coefficient to identify the indices pair (j1, j2) of off-diagonal
zero entries in covariance matrix Σ(ui), i = 1, . . . , n. The null hypothesis is
H0 : ρj1j2 = 0 v.s. H1 : ρj1j2 6= 0. Under H0, the test statistic is

tj1j2 = ρ̂j1j2

√
n− 2

1− ρ̂2j1j2
,

which follows t-distribution with n− 2 degrees of freedom. The estimator of cor-
relation coefficient is ρ̂j1j2 = n−1

∑n
i=1 yij1yij2/

√
σj1j1(ui)σj2j2(ui) where σj1j1(ui)

and σj2j2(ui) are the variance of yij1 and yij2 respectively. If H0 is rejected at the
significant level α0, then we denote ej1j2 = 1; otherwise ej1j2 = 0.

Totally, there exist m = p(p − 1)/2 combinations of (j1, j2), j1 6= j2, 1 ≤
j1, j2 ≤ p. This leads to a typical multiple comparison problem. False Discovery
Rate (FDR) can control Type I Error of multiple hypothesis tests. After the FDR
process, we obtain the indicator matrix E = (ej1j2)p×p (in graph theory, it is also
called adjacency matrix), E indicates the off-diagonal zero entries locations in
covariance matrix Σ.

4.2.2.2 Estimation of Diagonal Entries

During the FDR step, we notice that σj1j1(u) and σj2j2(u) are unknown pa-
rameters. In fact, we need to estimate the diagonal entries σjj(ui), j = 1, . . . , p.
In this section, we introduce two popular methods to estimate the diagonal en-
tries: local linear and local maximum likelihood.

Local Linear Method For simplicity, we fix the index j, then the observations
we need are yij, i = 1, . . . , n. Given u = u0, the objective function of local linear
method can be expressed as∑n

i=1

{
y2ij −

[
α∗
j (u0) + β∗

j (u0)(ui − u0)
]}2

Kh2(ui − u0),
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where α∗
j (u0) + β∗

j (u0)(ui − u0) is the local linear approximation of σjj(ui) at u0.
One can easily obtain the local linear estimator, i.e.,

σ̂jj(u0) = α̂∗
j (u0) =

∑n
i=1wh2(ui − u0)y2ij∑n
i=1wh2(ui − u0)

, (4.5)

where wh2(ui−u0) = Kh2(ui−u0)[Sn,2− (ui−u0)Sn,1], and Sn,j =
∑n

i=1Kh2(ui−
u0)(ui − u0)j, j = 1, 2. We can get the estimators σ̂jj(u0) for j = 1, . . . , p when
u0 takes the values u1, . . . , un respectively. The bandwidth h2 can be selected by
the leave-one-out cross validation method:

CV (h2) =

p∑
j=1

n∑
i=1

[
y2ij − σ̂jj(−i)(ui)

]2
,

where σ̂jj(−i)(ui) is the version of equation (4.5) when u0 = ui without the i-
th observation. However, as we reviewed in Section 2.1.2, the equivalent kernel
wh2(ui−u0) may be negative which can lead to negative variance (see Figure 2.1).
In practice, one can either use the interpolation method to adjust the negative
variance or use the local maximum likelihood method to satisfy the positive vari-
ance.

Local Maximum Likelihood Method Given u = u0, the likelihood objective
function is ∑n

i=1

[
y2ij

σjj(ui)
+ log(σjj(ui))

]
Kh3(ui − u0). (4.6)

Fan & Yao (1998) and Yu & Jones (2004) treated the estimation of σjj(·) as a non-
parametric regression problem. They applied the local linear regression smoother
to σjj(·). Inspired by their idea, we let σjj(ui) = exp(αj(u0) + βj(u0)(ui − u0)),
which can guarantee the estimator of variance positive. The likelihood objective
function Lj can be expressed as

n∑
i=1

[
y2ij

exp(αj(u0) + βj(u0)(ui − u0))
+ αj(u0) + βj(u0)(ui − u0)

]
Kh3(ui − u0),

where h3 represents the bandwidth for diagonal entries. We take the partial
differentiation of Lj with respect to αj(u0) and βj(u0) respectively, and let them
equal to zero. After some simple calculations, we obtain

∑n
i=1

y2ijui

θ
βj(u0)

i

Kh3(ui − u0)∑n
i=1

y2ij

θ
βj(u0)

i

Kh3(ui − u0)
=

∑n
i=1 uiKh3(ui − u0)∑n
i=1Kh3(ui − u0)

. (4.7)

Equation (4.7) is a non-linear equation of βj(u0) where θi = exp(ui).
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Denote the real root of (4.7) as β̂j(u0), then

α̂j(u0) = log

∑n
i=1

[
y2ij

exp(β̂j(u0)(ui−u0))

]
Kh3(ui − u0)∑n

i=1Kh3(ui − u0)

 , (4.8)

so
σ̂jj(ui, u0) = exp[α̂j(u0) + β̂j(u0)(ui − u0)], (4.9)

where σ̂jj(ui, u0) represents the exponential approximation estimator of σjj(ui)
at u = u0. In practice, we only need to compute the exponential approximation
estimator of σjj(ui) at u = ui, i.e., σ̂jj(ui, ui). From now on, we denote σ̂jj(ui, ui)
as σ̂jj(ui). Replacing u0 with ui in (4.8) and (4.9), after some simple calculations,
we can obtain

σ̂jj(ui) =

n∑
s=1

[
y2sj

exp(β̂j(ui)(us−ui))

]
Kh3(us − ui)∑n

s=1Kh3(us − ui)
, i = 1, . . . , n.

(4.10)

Hence, the key issue here is to find the real root of equation (4.7). Once this
root is available, according to (4.10), we can finally get the estimators σ̂jj(ui),
i = 1, . . . , n, j = 1, . . . , p. Furthermore, both β̂j(ui) and σ̂jj(ui) are related to
the bandwidth h3. In this section, we still use the leave-one-out cross validation
method to construct the objective function

CV (h3) =

p∑
j=1

n∑
i=1

[
y2ij

σ̂jj(−i)(ui)
+ log(σ̂jj(−i)(ui))

]
, (4.11)

where σ̂jj(−i)(ui) is the estimator of σjj(ui) without the i-th observation. By
equation (4.10), we have

σ̂jj(−i)(ui) =

n∑
s=1,s ̸=i

[
y2sj

exp(β̂j(−i)(ui)(us−ui))

]
Kh3(us − ui)∑n

s=1,s ̸=iKh3(us − ui)
,

where β̂j(−i)(ui) is the root of the function below:

n∑
s=1,s ̸=i

y2sjus

θ
βj(−i)(ui)

s

Kh3(us − ui)

n∑
s=1,s ̸=i

y2sj

θ
βj(−i)(ui)

s

Kh3(us − ui)
=

n∑
s=1,s ̸=i

usKh3(us − ui)

n∑
s=1,s ̸=i

Kh3(us − ui)
. (4.12)

Furthermore, we re-parameterize βj(−i)(ui) as β∗
ji, then equation (4.12) can be
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expressed as

f(β∗
ji) =

[
n∑

s=1,s ̸=i

y2sjus

θ
β∗
ji

s

Kh3(us − ui)

][
n∑

s=1,s ̸=i

Kh3(us − ui)

]

−

[
n∑

s=1,s ̸=i

y2sj

θ
β∗
ji

s

Kh3(us − ui)

][
n∑

s=1,s ̸=i

usKh3(us − ui)

]
= 0.

(4.13)

Minimizing (4.11) is time-consuming because for each candidate bandwidth h3,
we need to solve equation (4.13) np times (the combinations of i and j) to obtain
one evaluation of CV (h3). We employ Newton-Raphson method to speed up the
evaluation of CV (h3) and solve equation (4.13), for more details, see Appendix B.

4.2.2.3 Estimation of Off-diagonal Nonzero Entries

Once we obtain the bandwidth h3 using the leave-one-out cross validation
method, we can estimate the diagonal entries of Σ(ui), i = 1, . . . , n using equa-
tion (4.10). The FDR step can be implemented to get the adjacency matrix E.
Next, we estimate the off-diagonal nonzero entries in matrix Σ(·). Recall that
the adjacency matrix E is a symmetric matrix with zero diagonal entries. For
simplicity, we only focus on the strictly lower triangular part of E, denote it as
tril(E), let p∗ denote the number of nonzero entries in tril(E). Furthermore, we
vectorize tril(E) column-wise by omitting the zeros entries. At the same time,
we also record the corresponding row and column indices of nonzero entries by
the vectors r = (r1, . . . , rp∗)

T and c = (c1, . . . , cp∗)
T , where the pair (rs, cs) is the

s-th element of the set J = {(j1, j2) : ej1j2 6= 0, j2 = 1, . . . , p− 1, j2 < j1 ≤ p}.

We have completed the estimation of diagonal entries and the identification
of zero entries. Next, we will develop a cubic equation-based method to achieve
the estimation of off-diagonal nonzero entries.

Before introducing this method, let us concentrate on one pair (j1, j2) ∈ J ,
i.e., the entry crossed at j1-th row and j2-th column of Σ(·) is nonzero. Given
u = u0, we notice that the kernel weighted likelihood function of bivariate normal
distribution of yij1 and yij2 can be expressed as

L(u0, h4) =
n∑

i=1

{
1

1− ρ2j1j2(u0)

[
y2ij1

σj1j1(ui)
+

y2ij2
σj2j2(ui)

− 2ρj1j2(u0)yij1yij2√
σj1j1(ui)σj2j2(ui)

]
+ log

[
1− ρ2j1j2(u0)

]}
Kh4(ui − u0),

(4.14)
where ρj1j2(u0) is the correlation coefficient of yij1 and yij2 at u0, h4 is a new
bandwidth. Let ∂L(u0, h4)/∂ρj1j2(u0) = 0, after some simple computations, we
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get

ρ3j1j2(u0)− B(u0)ρ
2
j1j2

(u0) + [A(u0)− 1]ρj1j2(u0)− B(u0) = 0, (4.15)

where

A(u0) =

∑n
i=1

[
y2ij1

σj1j1
(ui)

+
y2ij2

σj2j2
(ui)

]
Kh4(ui − u0)∑n

i=1Kh4(ui − u0)
,

B(u0) =

∑n
i=1

yij1yij2√
σj1j1

(ui)σj2j2
(ui)

Kh4(ui − u0)∑n
i=1Kh4(ui − u0)

.

Equation (4.15) is a cubic equation of ρj1j2(u0), Kendall et al. (1973) pointed out
that there is at least one real root of (4.15) lying in the interval [−1, 1]. If there
are two or more real roots in the interval [−1, 1], we can use (4.14) to justify
which is the maximum likelihood estimator of correlation coefficient. Especially,
if A(u0) = 2, then ρj1j2(u0) = B(u0). According to the results illustrated in
Figure 4.1, we adopt the real root of equation (4.15) as our correlation coefficient
estimator at u = u0. For the bandwidth selection, we use the leave-one-out cross
validation criterion:

CV (h4) =
∑

(j1,j2)∈J

n∑
i=1

{
1

1− ρ̂2j1j2(−i)(ui, h4)

[
y2ij1

σ̂j1j1(ui)
+

y2ij2
σ̂j2j2(ui)

−
2ρ̂j1j2(−i)(ui)yij1yij2√
σ̂j1j1(ui)σ̂j2j2(ui)

]
+ log

[
1− ρ̂2j1j2(−i)(ui)

]}
,

(4.16)

where ρ̂j1j2(−i)(ui, h4) is the real root of equation (4.15) given ui and h4 without
the i-th observation. Once we obtain the bandwidth ĥ4 by minimizing equa-
tion (4.16), we can solve equation (4.15) by substituting h4 with ĥ4 to obtain
ρ̂j1j2(ui, ĥ4), hence estimator σ̂j1j2(ui) = ρ̂j1j2(ui, ĥ4)

√
σ̂j1j1(ui)σ̂j2j2(ui). Accord-

ing to the pair of row and column indices (rs, cs) in the set J , we can obtain a
strictly lower triangular matrix Li. Finally, given ui, i = 1, . . . , n, the estimator
Σ̂(ui) = Li + diag((σ̂11(ui), . . . , σ̂pp(ui))) + LT

i . If Σ̂(ui) is negative definite, we
modify it by subtracting (τ(ui) − c0)Ip where τ(ui) is the smallest eigenvalue of
Σ̂(ui) and c0 is a small positive constant, say 10−4.

In this section, we have developed Divide-and-Combine framework for both
mean and covariance matrix functions estimation. For the mean function esti-
mation, Fan et al. (2001)’s method can efficiently detect the linear EWFs. As
for the covariance matrix estimation, we use three separate steps to estimate di-
agonal entries, identify zero entries and evaluate the off-diagonal nonzero entries
respectively. Two estimators of diagonal entries are discussed, and we prefer the
estimator (4.9) due to its positiveness. The FDR procedure is used to keep the
Type I Error under an appropriate level in zero entries identification. Finally, we
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obtain the estimator of off-diagonal nonzero entries by solving the cubic equations
of correlation coefficient. To the best of our knowledge, there is no nonparametric
theory related to our Divide-and-Combine estimation with solving the cubic equa-
tions. Even though the unavailability of theory, the seven scenarios in Section 4.3
show that our Divide-and-Combine method performs better than factorized NCM
method in Chapter 3 in terms of Frobenius and spectral norm-based loss.

4.3 Numerical Study

In this section, we use seven scenarios to illustrate the performance of our
method.

Scenario 1

To illustrate the influence of sparsity on optimal bandwidth selection like the
pilot study in Section 3.2.4, we design a simple example as well: let the sample
size n be 100, the number of variable p be 100. Samples ui, i = 1, . . . , n are
evenly drawn from the uniform distribution over [−0.95, 0.95]. Then, given ui, we
define Σ(ui) through its square root matrix R(ui) = (rkj)p×p. For a pre-selected
θ ∈ [0, 1], we randomly select pθ = bp0θc entries from the strictly lower triangle
part of R(ui) and assign zeros to them. To keep the symmetry of R(ui), we reflect
these zero entries to the upper triangle part of R(ui). For the remaining entries,
if (k, j)-th entry is nonzero, then we set rkj(ui) = exp (0.5× ui sin(kj)) sin(πui).
Therefore, Σ(ui) = R(ui)×R(ui). Furthermore, we convert covariance matrix to
correlation matrix by

Corr(ui) = [Diag(Σ(ui))]−
1
2Σ(ui)[Diag(Σ(ui))]−

1
2 .

yi, i = 1, . . . , n are random samples from multivariate norm distribution with
zero mean and covariance matrix Corr(ui). Let SR be the sparsity of R(ui), then
θ = p

p−1
SR. In this example, we take SR = 0.98, then the sparsity of Σ(u) is 0.97.

To discuss the effect of zero entries, we simply compare three methods here.
Method A uses the local linear smoother to estimate the whole entries of Σ(u)
supposing the zero entries unknown. Method B uses the Divide-and-Combine
approach without zero entries identification step supposing the zero entries are
known. Method C implements the Divide-and-Combine approach steps supposing
the zero entries unknown.

Figure 4.2(a) shows the value of cross validation objective function against the
bandwidth if we use Method A. Figure 4.2(b) shows the same results of Method
B and C, the left y-axis represents the CV values using Method B, the right
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(a) Method A (b) Method B and C (c) Loss Error

Figure 4.2: The Results of Method A, B and C with SR = 0.98(SΣ = 0.97)

(a) p = 100,SR = 0.98 (b) n = 200,SR = 0.98 (c) n = 100, p = 100

Figure 4.3: Bandwidth Comparison

y-axis is for Method C. The optimal bandwidth in Figure 4.2(b) is finite while
in Figure 4.2(a) the optimal bandwidth goes to infinity. Because massive zero
entries dominate the convergence of bandwidth, i.e., h → ∞ when one applies
the local linear smoother to the entries of the covariance matrix. We can predict
that Method B and C should significantly reduce the Frobenius norm-based loss,
see the red dot dash line and yellow dash line in Figure 4.2(c).

Sample size n, variable dimension p and the sparsity of covariance SΣ also
have effects on the bandwidth selection. To obtain insight into these effects, we
design 3 cases: (1) Given p = 100,SR = 0.98, let the sample size n be 100,
150 and 200 respectively, for each n the procedure is repeated 90 times. The
sparsity of covariance SΣ is 0.97, see Figure 4.3(a); (2) Given n = 200,SR = 0.98,
let p be 100, 150 and 200 respectively, for each p it is also repeated 90 times.
The sparsity of covariance SΣ are 0.97, 0.9532 and 0.9361, see Figure 4.3(b); (3)
Given n = 100, p = 100, let SR are 0.98, 0.96 and 0.94 respectively. The sparsity
of covariance SΣ are 0.97, 0.9306 and 0.8774, each case is repeated 90 times, see
Figure 4.3(c).

Figure 4.3(c) clearly shows that the optimal bandwidth increases when the
sparsity SΣ decreases. This result is not surprising because the number of pa-
rameters (or the number of nonzero entries) increases if the sparsity decreases. In
this circumstance, it needs more information from local neighbours which widens
the optimal bandwidth. On the contrary, given the sparsity and p, the optimal
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(a) p = 100,SR = 0.98 (b) n = 200,SR = 0.98 (c) n = 100, p = 100

Figure 4.4: CV Values’ Comparison

bandwidth becomes shorter if we enlarge the sample size n, see Figure 4.3(a).
Because, large n provides more local neighbours than small n, which indicates
the bandwidth go to zero when n → ∞. Lastly, given sparsity and sample size
n, the optimal bandwidth increases when p increases, see Figure 4.3(b). The
number of parameters, i.e., p2 × (1 − SΣ) and sample size n have a great effect
on the bandwidth selection. We also illustrate the corresponding CV values of
previous examples, see Figure 4.4. We can conclude that the minimum CV value
increases with the sample size n and p increasing, see Figures 4.4(a) and 4.4(b);
The minimum CV value decreases with the sparsity SΣ increasing.

Scenario 2

Our basic idea of Divide-and-Combine framework is to divide the mean func-
tion and covariance function into different parts. For mean function, we use Fan
et al. (2001)’s method to detect the linear and nonlinear EWFs, while for covari-
ance function, we estimate the zero entries and nonzero entries separately. To
illustrate the advantage of our method for mean function estimation, we intro-
duce Scenario 2 here, the basic model is yi = µ(ui)+εi, i = 1, . . . , n, where µ(ui)

is the mean function with p components and εi represents Gaussian noise. We
suppose the mean function components including linear and nonlinear EWFs. To
satisfy our demands, without loss of generality, we always assume that the linear
EWFs ranking before nonlinear EWFs. The portion of linear EWFs, denoted as
r, is 10%, 30%, 50%, 70%, 90% respectively. The linear EWFs are generated from
the simple model µj(ui) = βui, where β is the slope which is randomly generated
from U [2, 8]. For the nonlinear EWFs, following Yuan & Cai (2010) and Chen &
Leng (2016), each nonlinear component of µ(u) is generated independently by

µj(u) =
50∑
k=1

(−1)k+1

k2
Zj cos(kπu),
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where {Zj : 1 ≤ j ≤ p} are independently sampled from the uniform distri-
bution over [−5, 5]. The noise ε is randomly generated from multivariate nor-
mal distribution with zero mean and covariance matrix Σ(u). We assume that
Σ(u) = 0.5 × {σij(u)}1≤i,j≤p, where σij(u) = exp(u/2)[{ϕ(u) + 0.1}I(|i − j| =
1) + ϕ(u)I(|i − j| = 2) + I(i = j)] and ϕ(u) is the standard normal probability
density function, the ui, i = 1, . . . , n are randomly drawn from uniform distribu-
tion U [−1, 1]. Finally, we set the sample size n = 200, the dimension p = 150

and repeat the above procedure 90 times. Figure 4.5(b) displays the box-plots of
mean square error for two different mean function estimations. Label Divided in
Figure 4.5(b) stands for the method described in Section 4.2.1. Label Direct rep-
resents the direct local linear estimation of µ(ui) without linear EWFs detection.
The MSE of our method consistently decreases deeper than the Direct method

(a) Two Methods: A and B (b) Two Mean Function Estimators

Figure 4.5: Comparison

with the linear portion increasing from 10% to 90%. Apparently, our two-step
mean function estimation indeed performs better than Direct method. Through-
out this chapter, we let DAC1 and DAC2 represent the Divide-and-Combine estima-
tion method with the diagonal entries estimated by (4.5) and (4.9) respectively.
Furthermore, we also obtain the Frobenius norm-based loss of covariance matrix
estimated by stNCM1, DAC1 and DAC2 respectively, see Table B.1. We can see that
the Divided method performs better (but not too much) than the Direct method
for both DAC1 and DAC2 estimation procedure in terms of Frobenius norm-based
loss. However, compared with stNCM1, the Frobenius norm-based loss of DAC1

and DAC2 are significantly smaller than stNCM1’s, and DAC2 is a slightly better
than DAC1. The most contribution comes from our Divide-and-Combine estima-
tion of nonparametric covariance matrix, see the loss comparison among stNCM1,
DAC1 and DAC2 in Table B.1. These conclusions coincide our logical thinking of
Divide-and-Combine both in mean and covariance matrix function estimation.

For simplicity, in the next five scenarios, we let the mean function compo-



Chapter 4. Divide-and-Combine Estimation of NCM 79

nents be nonlinear functions, but we still adopt Divide-and-Combine method to
estimate the mean function.

Scenario 3

Following Yuan & Cai (2010) and Chen & Leng (2016), the component µ(u) =
(µ1(u), . . . , µp(u))

T is generated independently as follows:

µj(u) =
50∑
k=1

(−1)k+1

k2
Zj cos(kπu), j = 1, . . . , p, (4.17)

where {Zj : 1 ≤ j ≤ p} are independently sampled from the uniform dis-
tribution over [−5, 5]. We assume that Σ(u) = 0.5 × {σij(u)}1≤i,j≤p, where
σij(u) = exp(u/2)[{ϕ(u) + 0.1}I(|i − j| = 1) + ϕ(u)I(|i − j| = 2) + I(i = j)]

and ϕ(u) is the standard normal probability density function.

Scenario 4

This scenario is originated from Zhang & Liu (2015) in simulation of the
source signal in Beamforming method. In this circumstance, given u, we simulate
µ(u) = (µ1(u), . . . , µp(u))

T using the following model

µj(u) = Zj exp
(
(u− τj)2

4

)
sin(2π(u− τj)), j = 1, . . . , p,

where Zj, j = 1, . . . , p are independently sampled from uniform distribution
U(−5, 5), τ = (τ1, . . . , τp) is a row vector of p evenly spaced points between
-1 and 1. Let Σ(u) = {σij(u)}1≤i,j≤p, where σij(u) = 0.5× exp(u/2)ϕ(u)|i−j|.

Scenario 5

This scenario is similar to Scenario 3 except the covariance Σ(u) = 0.1 ×
AT (u)A(u), where the (i, j)-th entry of A(u) is defined as:

aij(u) = exp
(
u sin(ij)

2

){
[sin(πu) + 0.1] I(|i− j| = 1)

+ sin(πu)I(|i− j| = 2) + I(i = j)

}
,

the mean function is the same as equation (4.17).

For each combination of (n, p) with n = 100, 200, 500 and p = 50, 100, 150, 300,
we repeat the experiment 90 times, generating 90 datasets of (yi, ui), 1 ≤ i ≤ n.
Each dataset is obtained in two steps. In step 1, we randomly draw ui, i = 1, . . . , n
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from the uniform distribution U(−1, 1). In step 2, for each given ui, we draw yi

from the covariance model yi = µ(ui) + Σ(ui)
1/2εi, where εi, i = 1, . . . , n are

iteratively drawn from the vector VAR(1) model

ε0 = ξ0, εi = ρεi−1 + ξi, i = 1, . . . , n,

with 0 ≤ ρ ≤ 1 and ξk, k = 0, 1, . . . are independently sampled from the standard
p-dimensional normal N(0, Ip). We consider ρ = 0, 0.3, 0.8 for the Scenarios 3–5.

Scenario 6

The mean function is same as (4.17) in Scenario 3. The sparse covariance
is generated by Σ(u) = 0.1 × R(u) × R(u), where R(u) is a sparse symmetry
matrix and is generated by the method in Scenario 1. For specificity, we let SR
be 0.96, n = 100, 200, 500 and p = 50, 100, 150, 300. For each combination (n, p),
we repeat it 90 times in this simulation as well.

For simplicity, we compare three estimators stNCM1, DAC1 and DAC2 here. We
use stNCM1 to represent our Q1-based nonparametric covariance estimation using
the local constant smoother in Chapter 3. We employ the spectral and Frobenius
norm-based integrated root-squared error (IRSE) as the criteria. Specifically, we
generate u∗i , i = 1, . . . , 25 evenly from interval [−0.9, 0.9] for Scenarios 3–6. Then
for each u∗i , the spectral and Frobenius norm-based IRSE are:

IRSEF (u
∗
i ) =

1

K0

K0∑
i=1

∥∥∥Σ̂(u∗i )− Σ(u∗i )
∥∥∥
F
,

IRSES(u
∗
i ) =

1

K0

K0∑
i=1

∥∥∥Σ̂(u∗i )− Σ(u∗i )
∥∥∥,

where K0 = 25 and Σ̂(u∗i ) is the estimator of underlying covariance matrix Σ(u∗i ).

In the step of estimating the off-diagonal zeros entries, the results of FDR
procedure depend on the significant level α. To test the effect of α, we let α =

0.01, 0.02, . . . , 0.1 respectively. We apply stNCM1, DAC1 and DAC2 to the 90 datasets
for each combination of (n, p, ρ). Their Frobenius and spectral norm-based IRSE
are also calculated at the same time for different α. Furthermore, we also have
a great interest in the accuracy of zero entries identification. Let p1 (p2) be the
number of nonzero (zero) entries in Σ(u). For any estimator Σ̂(u) of Σ(u), let n11

be the number of true discoveries of nonzero entries in Σ(u) by Σ̂(u). Similarly,
let n22 denote the number of true discoveries of zero entries in Σ(u) by Σ̂(u). Let



Chapter 4. Divide-and-Combine Estimation of NCM 81

SEN, SPE and ACC denote sensitivity, specificity and accuracy in the above testing,

SEN =
n11

p1
, SPE =

n22

p2
, ACC =

n11 + n22

p1 + p2
.

The significant level α is selected automatically by the minimum IRSE.

Furthermore, to evaluate the performance of our method when the locations
of zero entries vary with u, we design the Scenario 7.

Scenario 7

The idea of this case originates from the random graph model (Zhou et al.,
2010) with a slight modification. We assume the nonzero entries’ locations will
change at the points: -0.9, -0.7, -0.5, -0.3, -0.1, 0, 0.1, 0.3, 0.5, 0.7, 0.9. Firstly,
we generate the full matrix R(u) with

rij(u) = exp(0.5u sin(ij))(1− u2) + 0.1.

Let u∗k = −1.1 + 0.2k, k = 1, . . . , 10, RL(u) be strictly lower triangular matrix of
R(u). Denote the set of RL(u) indices as S, namely, S = {(i, j) : 1 ≤ i < j ≤ p}.
When k = 1, we randomly choose p elements from S, denote these p elements as
a new subset S1, and let S0 = S\S1. If (i, j) ∈ S0, then let the (i, j)-th entry of
RL(−0.9) be zero. Now RL(−0.9) is sparse and has p nonzero entries. Next, we
will discuss how to generate RL(u), ∀ u ∈ [−1, 1] through the following steps:

1. ∀ u ∈ [−1,−0.9), RL(u) shares the same nonzero locations as RL(−0.9);

2. When k = 1, for any u ∈ (u∗k, u
∗
k+1], we randomly choose p/10 elements from

current subset S1, and let them decrease to zero by (u∗k+1 − u)× rij(u∗k)/5;
on the other side, we randomly choose p/10 entries from the subset S0 as
well and let them increase to rij(u∗k+1) by (u− u∗k)× rij(u∗k+1)/5. At u∗k+1,
update both S0 and S1;

3. Repeat the step 2 until k = 9;

4. For any u ∈ (0.9, 1], RL(u) shares the same nonzero locations as RL(0.9).

After obtaining the sparse lower triangular matrix RL(u), we can easily get matrix
R(u). Note that, except the change-points u∗k, there always are 3p+ p/5 nonzero
entries in R(u). Lastly, we let Σ(u) = 0.1×R(u)×R(u).

In this Scenario, we let n = 100, p = 100, 150, 300 and repeat each parameter
setting 90 times. We compare the performance of the Frobenius and spectral
norm-based IRSE, SEN, SPE and ACC in Tables 4.10 ∼ 4.18.
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Result

The average (standard error in %) of both Frobenius and spectral norm-based
IRSE, SEN, SPE and ACC for Scenarios 1–7 are displayed in Tables 4.1 ∼ 4.18
and Tables B.1 ∼ B.22. Tables 4.1 ∼ 4.6 and Tables B.2 ∼ B.4 display the 12
combinations of pair (n, p, ρ) in Scenario 3. Tables B.5 ∼ B.13 display the 12
combinations of pair (n, p, ρ) in Scenario 4 and Tables B.14 ∼ B.22 display the
12 combinations of pair (n, p, ρ) in Scenario 5. Tables 4.7 ∼ 4.9 display the 12
combinations of pair (n, p, ρ) in Scenario 6 with SR = 0.96. The results can be
summarized as follows:

• Both DAC1 and DAC2 perform consistently better than the method stNCM1

for each parameter sets (n, p, ρ) of these seven simulations in terms of both
Frobenius and spectral norm-based IRSE, see Tables 4.1 ∼ 4.18 and Ta-
bles B.1 ∼ B.22 in Appendix B.

• On average, the spectral and Frobenius norm-based IRSE of each param-
eter sets (n, p, ρ) increase with the dimension p and the degree of serial
correlation ρ but decrease with sample size n, see Tables 4.1 ∼ 4.3.

• The sparsity of Σ(u) also has an effect on the performance of the spectral
and Frobenius norm-based IRSE when one compares stNCM1 with DAC1 and
DAC2. For instance, in Table 4.7, the sparsity of covariance matrix varies
from 0.944 to 0.6413. We can see that both Frobenius and spectral norm-
based IRSE increase when the sparsity decreases. Furthermore, Tables 4.7
and 4.9 show that the Frobenius and spectral norm-based IRSE of DAC1

and DAC2 are consistently better than those in stNCM1 method. On average,
compared with stNCM1, the improvements of DAC1 and DAC2 are 20.06%,
33.18% respectively in Table 4.7.

• We also compare three criteria: SEN, SPE and ACC for each scenario. For
example, in Table 4.4, the SPEs of DAC1 and DAC2 are almost equivalent to
stNCM1, however, the SENs of DAC1 and DAC2 are significantly larger than the
SENs of stNCM1 method. This is not surprising because we implement the
zero entries detection before bandwidth selection step rather than after the
bandwidth selection step as stNCM1 method. The similar conclusion can be
made for dependent samples when ρ = 0.3 and 0.8, see Tables 4.5 and 4.6.

• In Scenario 6, we notice that the SEN of stNCM1 is quite small compared with
DAC1 and DAC2, for example, when n = 200, p = 100 in Table 4.8, the value
of SEN in stNCM1 is just 0.2097, while the value of DAC1 is 0.8076. This means
stNCM1 method can not identify the nonzero entries efficiently, this can also
be confirmed by the ACC column in the same table.

• In Scenario 7, the global sparsity of underlying covariance matrix for p =
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100, 150 and 300 are 0.8542, 0.8982 and 0.9471 respectively. The nonzero
entries vary with the condition u described in Scenario 7. Tables 4.10
∼ 4.18 summarize the Frobenius and spectral norm-based IRSE, SEN, SPE

and ACC at each changing point u∗k = −1.1 + 0.2k, k = 1, . . . , 10. We can
conclude that DAC1 and DAC2 perform uniformly better than stNCM1 method
even under location-varying nonzero entries circumstances.

Table 4.1: The Average (standard error in %) of Frobenius Norm-based IRSE for Sce-
nario 3

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 0.3412(4.67) 0.2160(1.52) 0.06 0.2132(1.39) 0.05
100 0.3280(1.08) 0.2324(1.47) 0.06 0.2290(1.18) 0.05
150 0.3471(1.02) 0.2453(1.92) 0.06 0.2395(0.99) 0.05
300 0.3672(0.55) 0.2606(1.00) 0.06 0.2564(0.59) 0.06

200

50 0.2197(3.84) 0.1325(1.11) 0.01 0.1330(1.03) 0.01
100 0.2247(1.61) 0.1399(0.75) 0.02 0.1395(0.82) 0.01
150 0.2273(1.18) 0.1418(0.70) 0.02 0.1418(0.61) 0.02
300 0.2423(0.70) 0.1484(1.01) 0.02 0.1470(0.43) 0.02

500

50 0.1070(0.80) 0.0849(0.56) 0.01 0.0863(0.52) 0.01
100 0.1092(0.69) 0.0856(0.38) 0.01 0.0873(0.37) 0.01
150 0.1109(0.55) 0.0858(0.33) 0.01 0.0873(0.33) 0.01
300 0.1198(0.49) 0.0864(0.25) 0.01 0.0877(0.24) 0.01

4.4 Real Data Analysis

We apply our Divide-and-Combine estimation method to the stock prices.
The dataset contains 421 stocks daily closed price and volume from 01/01/2005
to 31/12/2010. For each week, we calculate the volume weighted average price
(VWAP) as the price of this week. We take logarithm of the ratio of VWAP at
week t and t − 1. In this real data analysis, according to economic depression
period, we divide the whole data into three periods, namely, before-financial-crisis
period from 01/01/2005 to 31/12/2006, in-financial-crisis period from 01/01/2007
to 31/12/2008 and after-financial-crisis period from 01/01/2009 to 31/12/2010.
We also collect the daily closed price and volume of index S&P 500.

We apply the proposed Divide-and-Combine estimation method to the data
from each time-period, obtaining the corresponding estimators of mean µ(u)

and covariance matrix Σ(u). Here, the diagonal estimators of Σ(u) show the
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Table 4.2: The Average (standard error in %) of Frobenius Norm-based IRSE for Sce-
nario 3 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.3

100

50 0.2908(2.02) 0.2462(1.60) 0.04 0.2464(1.55) 0.04
100 0.3049(1.36) 0.2661(1.14) 0.04 0.2633(1.13) 0.05
150 0.3143(1.00) 0.2719(1.31) 0.04 0.2699(0.87) 0.05
300 0.3346(0.63) 0.2883(0.67) 0.04 0.2864(0.59) 0.04

200

50 0.2440(2.08) 0.1610(0.95) 0.01 0.1618(0.98) 0.01
100 0.2452(1.29) 0.1669(0.96) 0.01 0.1676(0.94) 0.01
150 0.2469(1.11) 0.1719(0.69) 0.01 0.1717(0.63) 0.01
300 0.2561(0.78) 0.1820(0.53) 0.01 0.1816(0.50) 0.01

500

50 0.2284(1.28) 0.1121(0.72) 0.01 0.1163(0.76) 0.01
100 0.2352(0.84) 0.1141(0.59) 0.01 0.1181(0.61) 0.01
150 0.2332(0.74) 0.1140(0.51) 0.01 0.1181(0.53) 0.01
300 0.2340(0.49) 0.1122(0.30) 0.01 0.1157(0.31) 0.01

Table 4.3: The Average (standard error in %) of Frobenius Norm-based IRSE for Sce-
nario 3 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.8

100

50 0.5888(3.20) 0.4895(0.80) 0.06 0.4884(0.83) 0.05
100 0.5928(2.68) 0.5022(0.60) 0.06 0.5014(0.65) 0.04
150 0.5901(2.39) 0.5028(0.52) 0.03 0.5026(0.39) 0.03
300 0.5980(2.35) 0.5069(0.40) 0.02 0.5066(0.32) 0.02

200

50 0.5903(1.50) 0.4637(0.77) 0.01 0.4568(0.61) 0.01
100 0.5895(1.32) 0.4737(0.58) 0.01 0.4654(0.48) 0.01
150 0.5936(1.29) 0.4746(0.46) 0.01 0.4671(0.34) 0.01
300 0.5936(1.09) 0.4812(0.34) 0.01 0.4747(0.25) 0.01

500

50 0.5887(0.93) 0.4725(0.68) 0.01 0.4679(0.53) 0.01
100 0.5920(0.34) 0.4769(0.52) 0.01 0.4696(0.26) 0.01
150 0.5923(0.49) 0.4772(0.36) 0.01 0.4704(0.23) 0.01
300 0.5931(0.19) 0.4753(0.31) 0.01 0.4676(0.14) 0.01
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Table 4.7: The Average (standard error in %) of Frobenius Norm-based IRSE for Sce-
nario 6 with SR = 0.96

n p SΣ stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 0.9440 0.1295(0.58) 0.0829(0.46) 0.01 0.0814(0.47) 0.01
100 0.8828 0.3169(0.86) 0.2261(0.69) 0.05 0.2150(0.50) 0.09
150 0.8149 0.5118(1.24) 0.4078(0.68) 0.06 0.3828(0.54) 0.10
300 0.6431 1.0284(1.55) 0.9075(0.72) 0.01 0.9034(0.30) 0.04

200

50 0.9424 0.0939(0.37) 0.0663(0.94) 0.01 0.0617(0.38) 0.01
100 0.8782 0.2628(0.48) 0.1747(1.51) 0.09 0.1639(0.49) 0.09
150 0.8152 0.4325(0.70) 0.3157(2.52) 0.10 0.2947(0.49) 0.10
300 0.6418 0.9734(1.33) 0.8263(2.23) 0.10 0.7842(0.76) 0.10

500

50 0.9432 0.0745(0.22) 0.0847(1.47) 0.01 0.0477(0.24) 0.01
100 0.8804 0.2269(0.17) 0.1944(3.19) 0.01 0.1103(0.30) 0.03
150 0.8186 0.3854(0.11) 0.3040(7.37) 0.10 0.2021(0.39) 0.07
300 0.6413 0.8817(0.21) 0.7289(8.39) 0.10 0.5868(0.68) 0.10

volatility of individual returns while correlation coefficient matrix estimator of
Σ(u) captures cross-sectional relationships in these returns. As the number of
observations in this real dataset is 312, for each S&P 500 index in each period,
we obtain the corresponding covariance matrix estimators of Σ(u).

To analyse the structure and difference between these three periods, we em-
ploy four basic concepts of Graphic Model: Edge Density, Vertex Strength, Clus-
tering Coefficient and Centrality, see the review in Section 2.4.3. Figure 4.6 shows
these four terminologies for each period and makes comparison over three peri-
ods. For simplicity, Periods 1, 2 and 3 represent the before-financial-crisis period,
in-financial-crisis period and after-financial-crisis period respectively. The num-
ber of observations in each period are not equal in this real data analysis. Hence,
for each terminology, we use the Dwass-Steel-Crichtlow-Fligner pairwise ranking
nonparametric method (Douglas & Michael, 1991) to compare the period differ-
ence. We employ the Bonferroni method (Dunn, 1961) to correct the p-value.
Furthermore, we also implement the pairwise comparison for each graphical ter-
minology. The comparison of Centrality Index, Clustering Coefficient and Vertex
Strength are significantly different at the level 0.001. The Edge Density difference
between Period 1 and 2 is not significant at level 0.001. However, they are both
significantly different compared with Period 2. And the p-value for each com-
parison is also less than 0.001. That means the graphic structure or connection
changed significantly before, during and after financial-crisis. Centrality, Edge
Density and Vertex Strength have the same tendency of mean and median. We
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Table 4.9: The Average (standard error in %) of Spectral Norm-based IRSE for Scenario
6 with SR = 0.96

n p SΣ stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 0.9440 0.1295(0.58) 0.0829(0.46) 0.01 0.0814(0.47) 0.01
100 0.8828 0.3169(0.86) 0.2261(0.69) 0.05 0.2150(0.50) 0.09
150 0.8149 0.5118(1.24) 0.4078(0.68) 0.06 0.3828(0.54) 0.10
300 0.6431 1.0284(1.55) 0.9075(0.72) 0.01 0.9034(0.30) 0.04

200

50 0.9424 0.0939(0.37) 0.0663(0.94) 0.01 0.0617(0.38) 0.01
100 0.8782 0.2628(0.48) 0.1747(1.51) 0.09 0.1639(0.49) 0.09
150 0.8152 0.4325(0.70) 0.3157(2.52) 0.10 0.2947(0.49) 0.10
300 0.6418 0.9734(1.33) 0.8263(2.23) 0.10 0.7842(0.76) 0.10

500

50 0.9432 0.0745(0.22) 0.0847(1.47) 0.01 0.0477(0.24) 0.01
100 0.8804 0.2269(0.17) 0.1944(3.19) 0.01 0.1103(0.30) 0.03
150 0.8186 0.3854(0.11) 0.3040(7.37) 0.10 0.2021(0.39) 0.07
300 0.6413 0.8817(0.21) 0.7289(8.39) 0.10 0.5868(0.68) 0.10

Table 4.10: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 7 with p = 100

u0 stNCM1 DAC1 Sig. DAC2 Sig.

-0.9 0.4932(4.18) 0.0358(0.32) 0.01 0.0305(0.08) 0.05
-0.7 0.1807(1.32) 0.1230(0.35) 0.05 0.1269(0.42) 0.10
-0.5 0.3277(2.70) 0.2194(0.58) 0.09 0.2253(0.66) 0.10
-0.3 0.4059(2.90) 0.2819(0.83) 0.10 0.2837(0.80) 0.10
-0.1 0.3912(1.72) 0.2967(1.09) 0.10 0.2961(1.02) 0.10
0.1 0.3695(1.10) 0.2940(0.98) 0.10 0.2920(1.00) 0.10
0.3 0.3245(1.16) 0.2583(0.77) 0.10 0.2582(0.80) 0.10
0.5 0.2458(0.99) 0.1970(0.59) 0.08 0.1981(0.60) 0.10
0.7 0.1465(0.91) 0.1170(0.37) 0.07 0.1198(0.36) 0.10
0.9 1.0921(7.05) 0.0348(0.29) 0.02 0.0308(0.11) 0.08
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Table 4.12: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 7 with p = 100

u0 stNCM1 DAC1 Sig. DAC2 Sig.

-0.9 4.7625(42.12) 0.1240(2.43) 0.01 0.1063(0.67) 0.05
-0.7 0.6000(11.82) 0.4054(3.12) 0.05 0.4505(2.94) 0.10
-0.5 1.1940(24.63) 0.7872(6.28) 0.09 0.8456(6.32) 0.10
-0.3 1.4632(23.33) 1.0676(8.06) 0.10 1.0876(7.81) 0.10
-0.1 1.4498(18.38) 1.1199(12.62) 0.10 1.1018(11.99) 0.10
0.1 1.2996(9.91) 1.0716(9.57) 0.10 1.0474(8.62) 0.10
0.3 1.1210(5.71) 0.9068(6.28) 0.10 0.9186(5.84) 0.10
0.5 0.8850(7.53) 0.7283(6.91) 0.08 0.7486(6.83) 0.10
0.7 0.5722(8.16) 0.4567(4.85) 0.07 0.5199(4.56) 0.10
0.9 10.8086(71.34) 0.1351(3.41) 0.02 0.1271(1.10) 0.08

Table 4.13: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 7 with p = 150

u0 stNCM1 DAC1 Sig. DAC2 Sig.

-0.9 0.5661(3.37) 0.0347(0.21) 0.01 0.0312(0.07) 0.06
-0.7 0.1761(1.27) 0.1215(0.26) 0.05 0.1235(0.25) 0.10
-0.5 0.3332(3.03) 0.2142(0.46) 0.09 0.2181(0.49) 0.10
-0.3 0.4135(2.63) 0.2785(0.66) 0.09 0.2809(0.68) 0.10
-0.1 0.4130(1.37) 0.3210(0.76) 0.09 0.3208(0.75) 0.10
0.1 0.3882(0.85) 0.3127(0.81) 0.10 0.3113(0.82) 0.10
0.3 0.3436(0.98) 0.2750(0.65) 0.09 0.2743(0.70) 0.10
0.5 0.2714(1.11) 0.2177(0.44) 0.09 0.2205(0.50) 0.10
0.7 0.1497(0.80) 0.1227(0.34) 0.05 0.1264(0.27) 0.08
0.9 1.1283(5.18) 0.0354(0.19) 0.02 0.0325(0.07) 0.07
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Table 4.15: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 7 with p = 150

u0 stNCM1 DAC1 Sig. DAC2 Sig.

-0.9 6.7739(41.48) 0.1348(1.54) 0.01 0.1324(0.96) 0.06
-0.7 0.6844(11.88) 0.4884(3.91) 0.05 0.5423(3.51) 0.10
-0.5 1.4133(36.88) 0.8983(7.51) 0.09 0.9446(7.44) 0.10
-0.3 1.5481(24.57) 1.0749(6.50) 0.09 1.1218(6.94) 0.10
-0.1 1.6588(9.04) 1.3373(8.57) 0.09 1.3575(8.68) 0.10
0.1 1.4995(9.55) 1.2290(8.83) 0.10 1.2485(9.08) 0.10
0.3 1.3996(14.69) 1.1495(12.59) 0.09 1.1426(12.19) 0.10
0.5 1.1909(9.53) 0.9781(9.97) 0.09 1.0351(9.27) 0.10
0.7 0.5634(8.52) 0.4783(4.14) 0.05 0.5334(3.61) 0.08
0.9 13.6906(63.99) 0.1354(1.81) 0.02 0.1365(0.83) 0.07

Table 4.16: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 7 with p = 300

u0 stNCM1 DAC1 Sig. DAC2 Sig.

-0.9 0.7955(3.60) 0.0369(0.21) 0.01 0.0325(0.05) 0.04
-0.7 0.2348(1.55) 0.1306(0.19) 0.04 0.1337(0.20) 0.07
-0.5 0.4278(4.25) 0.2293(0.32) 0.06 0.2336(0.34) 0.09
-0.3 0.5150(3.78) 0.3012(0.44) 0.08 0.3033(0.46) 0.09
-0.1 0.4584(1.61) 0.3334(0.50) 0.08 0.3328(0.52) 0.09
0.1 0.4103(0.99) 0.3240(0.51) 0.08 0.3228(0.53) 0.09
0.3 0.3652(1.12) 0.2898(0.44) 0.08 0.2899(0.45) 0.08
0.5 0.2800(1.22) 0.2143(0.31) 0.06 0.2170(0.34) 0.08
0.7 0.1622(0.80) 0.1212(0.18) 0.04 0.1255(0.20) 0.08
0.9 1.6857(5.89) 0.0350(0.13) 0.01 0.0323(0.06) 0.06
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Table 4.18: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 7 with p = 300

u0 stNCM1 DAC1 Sig. DAC2 Sig.

-0.9 13.5284(62.80) 0.1604(2.78) 0.01 0.1500(1.15) 0.04
-0.7 1.2325(20.08) 0.5689(4.58) 0.04 0.6230(4.16) 0.07
-0.5 2.4460(61.52) 1.0358(7.00) 0.06 1.0676(7.11) 0.09
-0.3 2.6054(61.06) 1.3276(8.01) 0.08 1.3402(8.18) 0.09
-0.1 2.0575(13.55) 1.7450(12.84) 0.08 1.7585(12.83) 0.09
0.1 1.7671(8.49) 1.4855(8.09) 0.08 1.5027(8.29) 0.09
0.3 1.5712(7.03) 1.3684(5.89) 0.08 1.3804(6.11) 0.08
0.5 1.1972(13.55) 0.9737(4.44) 0.06 1.0207(4.53) 0.08
0.7 0.7810(18.00) 0.4929(2.18) 0.04 0.5547(1.92) 0.08
0.9 29.0120(102.74) 0.1468(2.22) 0.01 0.1515(1.20) 0.06

Figure 4.6: Period Comparison

can see that during financial-crisis, both the connection of stocks (Edges) and the
correlation coefficient of stocks (Vertex Strength) increase significantly. This is
not surprising because during financial-crisis, the economy recession can increase
the connection and correlation among stocks. After financial-crisis, the market
tries to recover from the economy depression.

To verify this conjecture, we employ the network to represent the correlation
coefficient matrix of the stocks prices. It is inconvenient to show all the networks
obtained by the correlation coefficient matrices as one can obtain a network for
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each day. Alternatively, we use the following way to show the changes of network
in different periods. We use equation (2.29) to find the central stock of network
given each S&P 500 index for every period. The central of Periods 1, 2, 3 are
HAL, TFC and BAC respectively. Then we average the networks of which the
centres are HAL, TFC and BAC. Figure 4.7 displays the average network for each
period. The red nodes represent the central stocks. We can see that the edges in
Periods 1 and 3 are more sparse than Period 2 which supports our conjecture.

Note: The initial graphical network is too dense. We trim the edge weight
by 0.5 to display the networks clearly.

Figure 4.7: Network Comparison

(a) Period 1 (b) Period 2 (c) Period 3

Figure 4.8: The Result of Clustering for Three Periods

Furthermore, we apply the fast greedy clustering method (Clauset et al.,
2004) to the averaged networks (i.e., Figure 4.7) to find the communities in each
period. The averaged networks in Period 1, 2 and 3 are divided into 31, 24 and
42 communities as shown in Figure 4.8. As the number of vertices in each period
is different, the comparison among these three clustering results is unnecessary.
However, we can see that the number of communities in before-financial-crisis
and after-financial-crisis is bigger than the number of communities in-financial-
crisis. This means that the market has recovered from economy depression and
re-unions to more small communities, see Figure 4.8(c).
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4.5 Discussion and Conclusion

In this chapter, inspired by the divide-and-conquer algorithm, we have de-
veloped the Divide-and-Combine framework of high-dimensional nonparametric
covariance models combining False Discovery Rate procedure and local linear
smoother. First, for mean function estimation, we identify the linear and non-
linear EWFs and split the mean function estimation into two parts. Second, we
divide the procedure of covariance estimation into three steps: (1) estimation of
the diagonal entries, (2) off-diagonal zero entries identification, (3) estimation of
the off-diagonal nonzero entries.

Under the sparsity assumption, estimation of off-diagonal entries encounters
the zero entries effect when we use the cross validation procedure to choose the
bandwidth. Many zero entries will dominate the selection of bandwidth in local
linear smoother, i.e., h tends to infinity. It is necessary to eliminate the effect of
zero entries before the application of local linear smoother. Hypothesis test can
offer us a method to identify the zero entries. As there are p0 null hypotheses,
FDR is used in the second step to control the type I error.

We adopt the local maximum likelihood framework (Fan et al., 1997; Yu
& Jones, 2004) to estimate the diagonal entries to make sure the variance is
positive. To solve the nonlinear equations, we have developed an algorithm based
on Newton-Raphson iteration, see Appendix B.2.

Lastly, to satisfy the correlation coefficient constraint, we have developed a
new nonparametric framework based on solving a nonparametric cubic equation.
Solving a cubic equation to obtain the estimator of correlation coefficient is not
our contribution, but applying it to the nonparametric setting is our contribution.
The simulation in Figure 4.1 clearly shows that the correlation estimator with
constraint is better than the empirical one.

Our method can also be extended to the non-sparse covariance matrix without
any further requirement. In this circumstance, we can just concentrate on the
estimator of diagonal and non-diagonal respectively. The kernel we used is the
standard normal density function, one can also replace it with the other kernel
functions, such as Epanechnikov, Biweight, Triweight, etc. This replacement is
beyond the scope of our discussion and will be argued elsewhere.



Chapter 5

Change-point Detection in Time
Series Segments

5.1 Introduction

As we reviewed in Chapter 1, intermittent isometric experiment consists of
several repeated segmentations of time series in signal processing (Rhea et al.,
2011; Forrest et al., 2014; Taylor et al., 2016; Pethick et al., 2016). For example,
in sports science, intermittent isometric contractions are widely employed in the
study of muscle fatigue (Agre & Rodriquez, 1991; Enoka & Duchateau, 2008;
Katayama et al., 2010; Pethick et al., 2016). Figure 5.2(a) shows 659977 output
torques of muscle contractions from only one participant. Data acquisition is
the same as described in Pethick et al. (2016). For simplicity, the participant
performed the designed exercise for six seconds. Between every two exercises,
there is a period (four seconds) for short break (see the gaps among the spikes in
Figure 5.2(a)). The output data is sampled at 1 kHz. The intermittent isometric
contractions last until the task failure (Pethick et al., 2016).

It is well known that the energy offered by Adenosine triphosphate (ATP)
for muscle contraction will gradually reduce along the time. As a sequence, the
output torques of muscle contraction could show different patterns, see Figure 5.4.
The time series in Figure 5.4(c) are not as stable as those in Figures 5.4(a)
and 5.4(b) because of the muscle fatigue. Therefore, sports scientists have a
great interest in detecting the occurrence of muscle fatigue, i.e., when the muscle
fatigue happens during a series of intermittent isometric contractions. It is easy
to understand that the later muscle fatigue happens, the better athlete performs.
Hence, it can evaluate the training effect by comparing the muscle fatigue change-
points before and after training.

Generally, this problem can be described by the following mathematical no-
tations. Let xt = (xt1, . . . , xtN) be a univariate time series with length N where t

99
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represents the time. Notation T are the number of intermittent isometric contrac-
tions. Let x1,x2, . . . ,xT represent a series of intermittent isometric contractions.
Mathematically, the change-point detection of muscle fatigue is equivalent to the
change-points detection of {x1,x2, . . . ,xT}. In particular, if N = 1, it degener-
ates to the classical change-point detection problem (Page, 1954; Killick et al.,
2012; Fryzlewicz, 2014).

However, in this research, the xt is no longer a scalar but a time series
with length N . Therefore, the classical change-point detection approaches, i.e.,
CUSUM method (Page, 1954), multiple change-points detection approach (Killick
et al., 2012), multiple change-points detection for wild binary segmentation (Fry-
zlewicz, 2014) and frequentist change-points detection (Fryzlewicz, 2020) could
not be applied to {x1,x2, . . . ,xT} directly.

To coordinate with the classical change-point detection approaches, we need
to find an appropriate statistic that can map the time series xt to a scalar or
score. Based on these scores, the classical change-point methods are applicable
to address the above issue. Denote the statistic as the function I : RN 7→ R.
Next, we discuss the choice of I(·). The minimum requirements we expected
are the transformation invariant and background-noise-free. The property of
transformation invariant was proved by Kullback & Leibler (1951) as follows:
Suppose the transformation yt = h(xt) makes yt is a sufficient statistics of xt,
then the relative entropies (5.6) of yt and xt are same. To the best of our
knowledge, we have not found the relevant articles about background noise in
terms of relative entropy. To be specific, background-noise-free refers to I(·) is
independent of the variance of noise throughout this thesis. The former property
could eliminate the impact of unit while the latter property guarantees that the
I(·) does not include the background noise.

The reasons that we use transformation invariant and background-noise-free
to choose function I(·) are summarized in Table 5.1.

Table 5.1: Potential Choices of I(·)

Mean Variance En CoEn RlEn
Transformation invariant 8 8 8 8 4

Background-noise-free 4 8 8 8 4

En, CoEn and RlEn represent entropy, conditional entropy and relative
entropy respectively. We also suppose the noise has zero mean and variance
σ2.

1. Mean and Variance. Suppose I(·) represents mean function, yt = h(xt) = αxt

is a linear transformation, α 6= 0. Then ȳt = αx̄t 6= x̄t. If xt is independent of
σ2, then for any transformation h(·), h(xt) is also independent of σ2. Similarly,
one can easily verify that variance does not have these two properties.
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2. Entropy (En) and Conditional Entropy (CoEn). Entropy and conditional
entropy are inappropriate choice of I(·).

• Entropy is scale variant, for example, let En(x) represent the entropy of
variable x, for any scale transformation y = αx, α ∈ R and α 6= 0 then
the entropy of variable y is En(x) + log |α|. More generally, entropy is not
transformation invariant under change of variable as well, see Ihara (1993,
p. 18).

• Conditional entropy is neither transformation invariant. In nonparametric
settings, the four entropies: Approximate Entropy (ApEn), Sample Entropy
(SpEn), Multi-scale Entropy (MsEn) and Fuzzy Entropy (FzEn) are the
special cases of conditional entropy, see their reviews in Section 2.3. For
instance, when one uses the multivariate uniform kernel to estimate the
nonparametric CoEn, the difference between ApEn and CoEn is log(2h) =
CoEn −ApEn, see more details in Appendix C.5. In fact, the term log(2h)

comes from the scale transformation in kernel function.

• Besides, entropy and conditional entropy are not background-noise-free.
A counterfactual example can be found in Section 5.2.1. Equations (5.3)
and (5.4) are entropy and conditional entropy respectively, however both
are related to the σ2.

3. Relative Entropy (RlEn). Kullback & Leibler (1951) have proved that RlEn has
the property of transformation invariant. The discussion of background-noise-free
property is put off in Propositions 5.1, 5.4 and 5.5.

Besides, in some specific circumstances, the mean and variance are not suit-
able choices of I(·). Suppose there are two stationary AR(2 ) processes:

Process 1: xi = ϕ11xi−1 + ϕ12xi−2 + ε1i,

Process 2: yi = ϕ21yi−1 + ϕ22yi−2 + ε2i,

where ε1i and ε2i are white noises with zero means and variances σ2
1 and σ2

2 respec-
tively. Let N = 500, T = 100, we randomly generate 60 time series x1, . . . ,x60

from Process 1. The last 40 time series x61, . . . ,x100 are from Process 2.

If E(xi) = E(yi) = 0, then we cannot use the means of xt,1 ≤ t ≤ 100 to
detect the change-point 61. Furthermore, if equation (5.1) holds,

σ2
2 = σ2

1

(ϕ12 − 1)(ϕ22 + 1)(ϕ21
2 − ϕ22

2 + 2ϕ22 − 1)

(ϕ22 − 1)(ϕ12 + 1)(ϕ11
2 − ϕ12

2 + 2ϕ12 − 1)
, (5.1)

then Var(xi) = Var(yi). In this case, it is also difficult to detect the change-
point based on the variances of time series xt, 1 ≤ t ≤ 100 as they are identical
in theory. Note that (5.1) stands for numerous combinations of Process 1 and
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Process 2 as long as ϕ11, ϕ12, ϕ21 and ϕ22 satisfy (5.1).

In this chapter, we will use the relative entropy (RlEn) as the statistic for xt

in ARMA processes and nonparametric settings. Relative entropy is also called
Kullback-Leibler divergence (Kullback & Leibler, 1951). It is a measure to de-
scribe the distance between two probability distributions. In Section 5.2.1, we re-
veal the nature and superiority of relative entropy in the context of autoregressive-
moving-average processes. The relative entropy is not only transformation invari-
ant but also background-noise-free. For instance, the relative entropy (5.5) of the
AR(2 ) in Section 5.2.1 is only determined by the autoregression coefficient ϕ1

and ϕ2. More generally, we extend the relative entropy to the nonparametric
case. It employs the kernel density estimation (KDE) method to complete the
estimation of relative entropy. We have not only clarified the detailed steps of
the nonparametric RlEn estimation, but also developed a consistency theory of
nonparametric RlEn. Under certain assumptions, the limiting distribution of
nonparametric RlEn is Gaussian with convergence rate

√
nh(m+1)/2 where m has

an upper bound. Furthermore, we recommand using the BIC criterion to select
the pre-determined parameter m. The consistency theory of BIC is developed to
ensure that the estimator of lag order converges to the true order with probability
1. The theories are summarized in Section 5.3, and the detailed proofs are put off
into Appendix C. In Section 5.4, we list the simulation studies and the results.
The results show that our algorithms for lag order selection and change-point
detection using the RlEn are efficient in nonparametric settings. Lastly, we ap-
ply our method to two real datasets: muscle contraction and Covid-19 dataset
respectively to verify the performance of our approach in practice.

5.2 Methodology

As aforementioned, the change-point detection in time series segments has
two steps: the determinant of function I(·) and change-point detection. In this
section, we first discuss the properties of relative entropy as function I(·) for
stationary ARMA process and nonparametric settings. Second, we propose a
BIC criterion for the selection of lag order and develop a consistency theory for
relative entropy. Finally, the optimal change-point detection method (Killick et
al., 2012) is applied to the scores to find the change-points.
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5.2.1 Relative Entropy

5.2.1.1 Relative Entropy for Stationary ARMA Process

First, we introduce the relative entropy for stationary AR(2) process, then
we extend it to the general stationary AR(p), MA(q) and ARMA(p, q) processes.

AR(2) Process Without loss of generality, let

xi = ϕ1xi−1 + ϕ2xi−2 + εi, (5.2)

represent the AR(2) process without intercept, where εi is Gaussian white noise
with zero mean and variance σ2. Suppose −1 < ϕ2 < 1− |ϕ1|, then process (5.2)
is stationary. Let γ0 = E(X2

i ), γ1 = E(XiXi−1) and γ2 = E(XiXi−2). By (5.2),
we have the following Yule-Walker equations: γ0 = γ0 ϕ1

2+2 γ1 ϕ1 ϕ2+γ0 ϕ2
2+σ2,

γ1 = γ0 ϕ1 + γ1 ϕ2 and γ2 = γ1 ϕ1 + γ0 ϕ2. Solving the above linear equations, we
can get γ0 = σ2 (ϕ2 − 1)/ϕc, γ1 = −ϕ1 σ

2/ϕc and γ2 = −σ2 (ϕ1
2 − ϕ2

2 + ϕ2)/ϕc

where ϕc = (ϕ2 + 1)
(
ϕ1

2 − ϕ2
2 + 2ϕ2 − 1

)
. As εi is the Gaussian white noise,

Xi, Xi−1, Xi−2 have the following density function, namely,

f(xi, xi−1, xi−2) = (2π)−
3
2 |Σ|−

1
2 exp

(
−(xi, xi−1, xi−2)Σ

−1(xi, xi−1, xi−2)
T/2
)
,

where

Σ =


γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

 , Σ−1 =
1

σ2


1 −ϕ1 −ϕ2

−ϕ1 ϕ1
2 − ϕ2

2 + 1 −ϕ1

−ϕ2 −ϕ1 1

 ,

and |Σ| = −σ6/(ϕc (ϕ2 + 1)). Therefore, the entropy of f(xi, xi−1, xi−2) is

En(f) = −
∫∫∫

f(xi, xi−1, xi−2) log (f(xi, xi−1, xi−2)) dxi dxi−1 dxi−2,

= 2−1 log
(
(2πe)3 |Σ|

)
.

(5.3)

By (5.2) and given xi−1, xi−2, we can obtain the conditional density:

g(xi|xi−1, xi−2) = (2π)−1/2|σ|−1 exp
(
−(xi − ϕ1xi−1 − ϕ2xi−2)

2/(2σ2)
)
.
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The conditional entropy is

CoEn(f, g) = −
∫∫∫

f(xi, xi−1, xi−2) log (g(xi|xi−1, xi−2)) dxi dxi−1 dxi−2,

=
1

2
log(2π) + log(σ) + 1

2σ2
E
[
(xi − ϕ1xi−1 − ϕ2xi−2)

2] ,
=

1

2
log(2π) + log(σ) + 1

2σ2
E
[
y2
]
,

where y = cTx, cT = (1,−ϕ1,−ϕ2), x = (xi, xi−1, xi−2)
T . Apparently, y ∼

N(0, cTΣc). It is easy to verify that cTΣc = σ2, so

CoEn(f, g) = 2−1 log(2πe) + log(σ). (5.4)

We also notice that the density of xi is g(xi) = (2π)−1/2|γ0|−1/2 exp (−x2i /2γ0).
Finally, one can obtain the relative entropy

RlEn(f, g) = 2−1 log ((ϕ2 − 1)/ϕc) . (5.5)

Comparing Entropy (5.3), Conditional Entropy (5.4) with Relative Entropy (5.5),
we conclude that RlEn is determined by the coefficients of autoregression coeffi-
cients and does not include the variance of noise in the AR(2 ) process. Next, we
give more general RlEn results for AR(p), MA(q) and ARMA(p, q) processes.

We first generalize the relative entropy in the context of AR(p) process, then
extend the theory to MA(q) and ARMA(p,q) processes. From now on, we sim-
ply use I(·) to represent the RlEn. For the consecutive variable vector x(m+1) =

(xi, xi+1, . . . , xi+m)
T , m ≥ 1, we try to find a statistic I(·) such that I(x(m+1))

is transformation invariant and background-noise-free (i.e., independent of σ2).
From AR(2) process, we know the relative entropy is transformation invariant and
background-noise-free, see equation (5.5). Based on this fact, we divide variable
vector x(m+1) into two consecutive parts, i.e., x(m+1) = ((x(m+1−s))T , (x(s))T )T ,
where x(m+1−s) = (xi, xi+1, . . . , xi+m−s)

T and x(s) = (xi+m+1−s, xi+m+2−s, . . . , xi+m)
T ,

1 ≤ s ≤ m. Under the stationary assumption, we define the relative entropy as

Is
(
x(m+1)

)
= RlEns(f, g)

=

∫
R(m+1)

f
(
x(m+1)

)
log
(

f
(
x(m+1)

)
g (x(m+1−s)) g (x(s))

)
dx(m+1),

(5.6)

where f(·) and g(·) are the corresponding probability density functions. The
RlEn (5.6) defines the divergence between f

(
x(m+1)

)
and g

(
x(m+1−s)

)
g
(
x(s)
)
.

Furthermore, let Rm, R11;ms, R22;ms be the autocorrelation matrices of vectors
x(m+1), x(m+1−s) and x(s) respectively, see the explicit expression in Appendix C.1.
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AR(p) Process Without loss of generality, let the AR(p) process with zero
mean be

xi = ϕ1xi−1 + ϕ2xi−2 + · · ·+ ϕpxi−p + εi, (5.7)

where ϕ1, . . . , ϕp are autoregression coefficients, εi is the Gaussian white noise
with zero mean and variance σ2, {xi}1≤i≤n and {εi}1≤i≤n are dependent. Let γk =
E(xixi−k), k = 0,±1,±2, . . . represent the auto-covariance functions, apparently
γk = γ−k. Next, define ρk = γk/γ0, k = 0,±1,±2, . . . as the auto-correlation
functions. Hence, we have the following proposition.

Proposition 5.1. Supposed {xi} is a time series from the stationary AR(p) pro-
cess defined in (5.7), εi is the Gaussian white noise with zero mean and variance
σ2, then we have

Is
(
x(m+1)

)
=

1

2
log
(
|R11;ms| |R22;ms|

|Rm|

)
, 1 ≤ s ≤ m, (5.8)

which is independent of σ2, where |·| is a matrix determinant operator.

The proof of Proposition 5.1 can be found in Appendix C.1. Proposition 5.1
demonstrates the background-noise-free property. Clearly, Is(x(m+1)) depends on
two parameters: m and s, m is the lag order and s represents the partition way
of two consecutive variable vectors. It seems that for any m ≥ 1, 1 ≤ s ≤ m,
the relative entropy (5.8) can characterize the information of AR(p) process.
However, Proposition 5.2 indicates that when m < p, the relative entropy only
contains part information of AR(p) process.

Proposition 5.2. For x(m+1), x(m+1−s) and x(s) defined in equation (5.6), p is
the order of AR(p) process (5.7). If m < p, then for any 1 ≤ s ≤ m, Is(x(m+1))

is a function of ρ1, . . . , ρm only.

Proposition 5.2 can be directly proved by Proposition 5.1 and Yule-Walker
equations. Proposition 5.2 implies one cannot distinguish the change-point using
the relative entropy in practice, if the choice of m is inappropriate. For instance,
the two AR(2) processes in (5.33) and (5.34), if we let ϕ11 = 3/4, ϕ21 = 1/4 and
ϕ12 = −1/4, ϕ22 = 7/12, then Process 1 and Process 2 represent two different
processes. However, if we let m = 1, then s must be 1. Following Proposition 5.1,
the relative entropy I1(x(2)) of Processes 1 and 2 are both equal to log(5/4), hence
one fails to separate Process 1 from Process 2. However, if we let m = 2, s = 1,
I1(x(3)) of Process 1 is 2.3684 while I1(x(3)) of Process 2 is 1.6667, then we can
distinguish Process 1 and Process 2. Proposition 5.2 also means that Is(x(m+1))

is a function of ρ1, . . . , ρp when m ≥ p as the partial auto-correlation function
(PACF) of AR(p) is cut-off at p. In practice, we can let m = p and p is determined
by AIC or BIC in the context of stationary AR processes.

Is(x(m+1)) is not only dependent on m but also on s. Since R is symmetric,
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for s = 1 and s = m, we have I1(x(m+1)) = Im(x(m+1)). More generally, if m is
odd, then we have (m + 1)/2 ways to divide x(m+1) into two consecutive parts,
if m is even, then the number of division ways is m/2. Proposition 5.3 gives an
explicit relative entropy when s = 1.

Proposition 5.3. For AR(p) process and variable vector x(m+1), if s = 1 and
m = p, then the relative entropy defined in (5.6) is

I1
(
x(p+1)

)
= −2−1 log

(
1−

∑p

k=1
ϕkρk

)
,

where ϕk and ρk, k = 1, . . . , p are the autoregression and autocorrelation coeffi-
cient respectively. Furthermore, for any m > p, I1(x(m+1)) = I1(x(p+1)).

The proof of Proposition 5.3 can be found in Appendix C.1. Proposition 5.3
gives an explicit form of relative entropy for the stationary AR(p) process. When
m ≥ p and s = 1, I1(x(m+1)) is no longer relevant to m, this result is not
surprising because the partial correlation of AR(p) process is cut-off at order p.
This property can also be extended to s = 2, 3, . . . , dp/2e. For example,

Corollary 5.1. For AR(p) process and variable vector x(m+1), if s = 2 and
m = p+ 1, then the relative entropy defined in (5.6) is

I2
(
x(p+2)

)
=

1

2
log
(

1− ρ21
(1−

∑p
k=1 ϕkρk)

2 − (ρ1 −
∑p

k=1 ϕkρk+1)
2

)
,

where ϕk and ρk are the autoregression and autocorrelation coefficient respectively.
Furthermore, for any m > p+ 1, I2(x(m+1)) = I2(x(p+2)).

The proof of Corollary 5.1 is similar to that of Proposition 5.3, we will omit
the proof. I2(x(m+1)) is more complex than I1(x(m+1)) when m > p + 1. In
practice, we suggest using m = p and s = 1.

MA(q) Process Without loss of generality, let the MA(q) process with zero
mean be

xi = εi + θ1εi−1 + θ2εi−2 + · · ·+ θqεi−q, (5.9)

where θ1, . . . , θq are parameters. {εi}1≤i≤n are the i.i.d. Gaussian process with
zero mean and variance σ2. Let γk and ρk, k = 0,±1,±2, . . . still represent the
auto-covariance and auto-correlation functions of MA(q), then we have

Proposition 5.4. If xi is a stationary moving average process of order q defined
as (5.9), R(1)

m , R
(1)
11;ms, R

(1)
22;ms are the autocorrelation matrices of vectors x(m+1),
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x(m+1−s) and x(s) in MA(q) process, then we have

Is
(
x(m+1)

)
=

1

2
log


∣∣∣R(1)

11;ms

∣∣∣ ∣∣∣R(1)
22;ms

∣∣∣∣∣∣R(1)
m

∣∣∣
 , 1 ≤ s ≤ m, (5.10)

which is independent of σ2, where |·| is a matrix determinant operator. Further-
more, let q1 = q + 1, if s = 1 and m ≥ q1, then Is

(
x(m+1)

)
= −2−1 log(1 −

R
(1)
12;q11

(R
(1)
11;q11

)−1R
(1)
21;q11

) where R(1)
12;q11

= (ρ1, . . . , ρq1) and R(1)
21;q11

= (R
(1)
12;q11

)T .
The proof of Proposition 5.4 can be found in Appendix C.1. Similar to AR(p),

when s = 1 and m ≥ q1, the RlEn is irrelevant to m and no longer changes. Next,
we show that ARMA(p, q) process also has the background-noise-free property.

ARMA(p, q) Process Suppose the stationary ARMA(p,q) be

xi = ϕ1xi−1 + ϕ2xi−2 + · · ·+ ϕpxi−p + εi + θ1εi−1 + θ2εi−2 + · · ·+ θqεi−q,

where ϕ1, . . . , ϕp and θ1, . . . , θq are parameters. {εi}1≤i≤n are the i.i.d. Gaussian
process with zero mean and variance σ2. Let γk and ρk still represent the auto-
covariance and auto-correlation functions of ARMA(p,q), then we have
Proposition 5.5. For stationary ARMA(p, q) process, let R(2)

m , R
(2)
11;ms, R

(2)
22;ms be

the autocorrelation matrices of vectors x(m+1), x(m+1−s) and x(s) in ARMA(p,q)
process, then we have

Is
(
x(m+1)

)
=

1

2
log


∣∣∣R(2)

11;ms

∣∣∣ ∣∣∣R(2)
22;ms

∣∣∣∣∣∣R(2)
m

∣∣∣
 , 1 ≤ s ≤ m, (5.11)

which is independent of σ2, where |·| is a matrix determinant operator. Further-
more, if s = 1, then Is

(
x(m+1)

)
= −2−1 log(1−R(2)

12;m1(R
(2)
11;m1)

−1R
(2)
21;m1).

The proof of Proposition 5.5 can be found in Appendix C.1. Note that when
s = 1, the RlEn of ARMA(p, q) process depends on m even m ≥ max(p, q + 1).
Remark 5.1. The orders p and q are finite in Propositions 5.5. In fact, by
Wold representation (Wold, 1948) and stationary assumption, the RlEns in equa-
tions (5.8), (5.10) and (5.11) still hold when p or/and q are infinite. So the
background-noise-free property is true. Furthermore, the form of RlEns in equa-
tions (5.8), (5.10) and (5.11) can be regarded as the statistics for testing the
independency between x(m+1−s) and x(s). The RlEn (or Kullback–Leibler diver-
gence) is 0 if x(m+1−s) and x(s) are independent.

So far, we have discussed the relative entropy for stationary AR(p), MA(q)
and ARMA(p, q) processes. In literature, there are plenty of nonlinear time se-
ries topics, for example, Fan & Yao (2003) listed various models and estimation
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approaches for nonlinear time series in their book. Next, we will introduce the
method of relative entropy estimation under the nonparametric circumstance. As
discussed above, the tuning parameters m and s are also related to the relative
entropy. For simplicity, we let s = 1 in the nonparametric settings.

5.2.1.2 Nonparametric Relative Entropy

Let X1, . . . , XN represent the time-varying scalar measurements, which form
a strictly stationary process. Denote X(m) = (Xi, . . . , Xi+m−1)

T as the m con-
secutive variables vector where m could be sufficiently large but be bounded
by M . The density function of X(m) is defined as g(X(m)). Furthermore, let
X(m+1) = (Xi, . . . , Xi+m)

T and f(X(m+1)) be the m+1 consecutive variables vec-
tor and its probability density function. Note that X(m+1) = (X(m)T , Xi+m)

T
,

given the first vector X(m), the conditional probability density function can be
expressed as f(Xi+m | X(m)) = f(X(m+1))/g(X(m)). And let g1(Xi+m) be the
density function of Xi+m, the relative entropy of system can be expressed as

RlEn = E

[
log
(

f
(
X(m+1)

)
g (X(m)) g1(Xi+m)

)]
.

Estimation of RlEn can be divided into two parts: the density estimation and
expectation estimation. For density estimation, we use nonparametric kernel
method to estimate f(X(m+1)), g(X(m)) and g1(Xi+m). Let x1, . . . , xN be the
observations of X1, . . . , XN , x(m)

i = (xi, . . . , xi+m−1)
T , x(m+1)

i = (x(m)
i

T
, xi+m)

T ,
i = 1, . . . , n where n = N −m. Next we employ the Jackknife kernel to estimate
the densities. Jackknife kernel has been proposed to eliminate the boundaries
effect for the kernel with bounded support (e.g., John, 1984; Härdle, 1990; Jones,
1993, and the references therein). Without loss of generality, we suppose As-
sumption 1 holds throughout this chapter.

Assumption 1. The domain of kernel function K(·) is [−1, 1] and K(·) satisfies
K(−x) = K(x) for any x ∈ [−1, 1],

∫ +1

−1
K(x) dx = 1 and

∫ +1

−1
x2K(x) dx < +∞.

In fact, the Jackknife kernel is a linear combination of two different self-
normalized kernel, namely,

kρ(u) = (1 + β(ρ))
K(u)

ω0(ρ)
− β(ρ)

α

K(u/α)

ω0(ρ/α)
,

where ωl(ρ) =
∫ ρ

−1
ulK(u) du, l = 0, 1, 2, 0 ≤ ρ ≤ 1 and β(ρ) = R1(ρ)

αR1(ρ/α)−R1(ρ)
,

where Rl(ρ) = ωl(ρ)/ω0(ρ), l = 1, 2. In this chapter, we follow the choice of α
in John (1984) and let α = 2 − ρ. Finally, for univariate x and y, the Jackknife
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kernel is

KJ
h (x− y) =


h−1k(x/h)

(
x−y
h

)
, ifx ∈ [0, h).

h−1K
(
x−y
h

)
, ifx ∈ [h, 1− h].

h−1k[(1−x)/h]

(
x−y
h

)
, ifx ∈ (1− h, 1].

For more details of Jackknife kernel, see Section 2.4.4 and Hong & White (2005).
Next, for vectors x = (x1, . . . , xm) and y = (y1, . . . , ym), we define the scaled
multivariate kernel as

K(m)
h (x− y) = KJ

h (x1 − y1)×KJ
h (x2 − y2)× · · · ×KJ

h (xm − ym). (5.12)

The bandwidths of x1, . . . , xm in equation (5.12) are same following the assump-
tion in Hong & White (2005).

Define the “leave-one-out” kernel density estimators:

f̂
(

x(m+1)
i

)
=

1

n− 1

∑n

j=1
K(m+1)

h

(
x(m+1)
i − x(m+1)

j

)
1(j 6= i),

ĝ
(

x(m)
i

)
=

1

n− 1

∑n

j=1
K(m)

h

(
x(m)
i − x(m)

j

)
1(j 6= i),

ĝ1(xi+m) =
1

n− 1

∑n

j=1
KJ

h (xi+m − xj+m)1(j 6= i),

then the nonparametric estimator of RlEn can be expressed as

În(m,h) =
1

n

∑
i∈Sn(m)

log
f̂
(

x(m+1)
i

)
ĝ
(

x(m)
i

)
ĝ1(xi+m)

, (5.13)

where Sn(m) = {i ∈ N : 1 ≤ i ≤ n, f̂(x(m+1)
i ) > 0, ĝ(x(m)

i ) > 0, ĝ1(xi+m) > 0}.
We select the bandwidth by maximizing estimator (5.13) given m, namely, ĥ =

arg maxh În(m,h).

However, given h, maximization of estimator (5.13) with respect to m is
an inappropriate criterion to select m, because the curve of În(m,h) against m
changes dramatically for different bandwidths, see Figure C.1. In practice, the
lag order m should be determined before relative entropy computation. In next
section, we use BIC criterion to select the optimal lag order based on the general
nonlinear autoregression model.

5.2.1.3 Lag Order Selection

For simplicity, the general nonlinear autoregression model studied in this
circumstance is

xi+m = F
(

x(m)
i

)
+ εi, (5.14)



Chapter 5. Change-point Detection in Time Series Segments 110

where 1 ≤ m ≤ M , εi is Gaussian white noise and F(·) is an unknown function.
The Nadaraya-Watson estimator of F(x(m)

i ) can be expressed as:

F̂
(

x(m)
i , h∗

)
=
∑n

j=1
lj

(
x(m)
i , h∗

)
xj+m, (5.15)

where

lj

(
x(m)
i , h∗

)
=

K(m)
h∗

(
x(m)
j − x(m)

i

)
∑n

s=1K
(m)
h∗

(
x(m)
s − x(m)

i

) , j = 1, . . . , n.

Denote L(h∗) as

L(h∗) =



l1

(
x(m)
1 , h∗

)
l2

(
x(m)
1 , h∗

)
· · · ln

(
x(m)
1 , h∗

)
l1

(
x(m)
2 , h∗

)
l2

(
x(m)
2 , h∗

)
· · · ln

(
x(m)
2 , h∗

)
... ... · · · ...

l1

(
x(m)
n , h∗

)
l2

(
x(m)
n , h∗

)
· · · ln

(
x(m)
n , h∗

)


. (5.16)

Then we have the following Lemma.

Lemma 5.1. For the multivariate kernel K(m)
h∗

(·) and Nadaraya-Watson estima-
tor (5.15), L(h∗) is defined as equation (5.16), the effective degrees of freedom v

can be explicitly expressed as

v(m,h∗) = tr(L(h∗)) = K(m)
h∗

(0)
∑n

i=1

(∑n

s=1
K(m)

h∗

(
x(m)
s − x(m)

i

))−1

= O(h−m
∗ ).

The proof is straightforward which will be omitted here. The bandwidth is
selected by so-called leave-one-out cross validation method, i.e., minimizing

CV (m,h∗) =
∑n

i=1

(
xi+m − F̂−i

(
x(m)
i , h∗

))2
,

where

F̂−i

(
x(m)
i , h∗

)
=

n∑
j=1

K(m)
h∗

(
x(m)
j − x(m)

i

)
∑n

s=1,s ̸=iK
(m)
h∗

(
x(m)
s − x(m)

i

)xj+m.

Given m = 1, 2, . . . ,M , let ĥm = arg minh∗ CV (m,h∗) be the optimal bandwidth,
define the average square predict error as

σ̂2
e(m) =

1

n

∑n

i=1

(
xi+m − F̂−i

(
x(m)
i , ĥm

))2
= n−1CV (m, ĥm),

and the BIC is

BIC(m) = n log(σ̂2
e(m)) + v(m, ĥm) log(n), m = 1, 2, . . . ,M. (5.17)
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Supposing m0 be the underlying lag order and m0 ∈ {1, 2, . . . ,M}. Let m̂ =

arg minmBIC(m), then we have Theorem 5.1.

Theorem 5.1. Under conditions (C11)–(C17), m̂ converges to m0 in probability,
i.e.,

P (m̂ = m0)→ 1.

The proof details of Theorem 5.1 can be found in Appendix C.2. There exist
various criteria proposed to address the lag order selection problem (e.g., Shibata,
1981; Vieu, 1995; Shao, 1997). This proof follows the framework of Vieu (1995)
combining the discussion in Shao (1997). We can use criterion (5.17) to choose
m in advance, then implement the computation of relative entropy.

5.2.2 Change-points Detection

In the previous subsection, we have discussed the relative entropy of a time
series segment for ARMA processes and nonparametric settings. Similarly, we
can apply the same procedure to the other time series segments. Once we obtain
the relative entropies of time series segments, denoted as RlEn1,RlEn2, . . . ,RlEnJ

where J represents the number of time series segments. Then, we can apply the
existing detection methods such as CUSUM (Page, 1954) and its variants (Inclán
& Tiao, 1994; Picard et al., 2011), quasi-likelihood (Braun et al., 2000). In
this chapter, we employ the proposed detection method (Killick et al., 2012)
to search the change-points as they pointed out that the optimal change-points
can be detected with a linear computational cost. Furthermore, their method is
officially adopted in the function findchangepts by MATLAB since 2018, which is
convenient in the context of our algorithms below.

5.2.3 Algorithms

In practice, let X = (xij)N×J . Each column of X represents a time series with
length N . Suppose X has been transformed by the following logistic function,

X =
1

1 + exp (−Y)
, (5.18)

where Y represents the original time series observations without bounded support.
Similar to Hong & White (2005), we use the logistic function (5.18) to ensure the
compact support in Assumption 2 throughout this chapter.

Finally, we summarize our approach using the following two algorithms:

In Algorithm 1, one can specify the initial value of M . We take 10 as the
default value following the suggestion from Section 4.5 in Wasserman (2006).
The bandwidth selection consumes most computation time. To reduce the time
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Algorithm 1: m-selection step
Data: Matrix observation X with size N × J .
Result: m∗, the optimal lag order of X .
Init: M ← 10

1 for j ← 1 to J do
2 mj ← 0
3 Xj ← X (:, j)
4 for m← 1 to M do
5 n← N −m
6 for i← 1 to n do
7 x(m)

i ← Xj(i : (i+m− 1))
8 xi+m ← Xj(i+m)

9 end

10 h∗ ← arg minh∗ 1/n
∑n

i=1

(
xi+m − ĝ−i

(
x(m)
i , h∗

))2
11 v(m,h∗)← tr(L(h∗))

12 σ̂2
e ← 1/n

∑n
i=1

(
xi+m − ĝ

(
x(m)
i , h∗

))2
13 BICj(m)← n log(σ̂2

e) + v(m,h∗) log(n)
14 end
15 end
16 BIC(m) = 1

J

∑J
j=1 BICj(m)

17 m∗ ← arg minm{BIC(m),m = 1, . . . ,M}

Algorithm 2: RlEn Step
Data: Matrix observation X with size N × J .
Result: j∗, the change-points.
Init: m← m∗ from Algorithm 1

1 for j ← 1 to J do
2 rlenj ← 0
3 n← N −m
4 Xj ← X (:, j)
5 h← arg minh

{
În(m,h)

}
from equation (5.13)

6 rlenj ← În(m,h)
7 end
8 j∗ ← change point detected from rlenj, j = 1, . . . , J using the proposed

method (Killick et al., 2012)
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of selection h∗, one can choose h∗ moderately at the order O(n−1/(4+m)) as an
initial value, see Section 8.2 in Fan & Yao (2003) for more details.

In Algorithm 2, we implement the bandwidth selection as well. The main dif-
ference is that the Algorithm 1 includes the multivariate nonparametric regression
but in Algorithm 2, RlEn includes the multivariate nonparametric kernel density
estimation.

5.3 Theory

Hong & White (2005) have proved that the relative entropy of pairwise vari-
able (Xt, Xt−j) has a normal limiting distribution. The basic idea of Hong &
White (2005)’s proof is to decompose the relative entropy into some different
items, then expand each item to different parts by neglecting the smaller ones.
Heuristically, the main parts can be expressed by the U -statistics. By discussing
the limiting distribution of these U -statistics, they finally established consistency
theory of relative entropy for pairwise variables.

In this section, we develop a consistency theory of the relative entropy for
m consecutive variables. By using their proving skills and ideas, we show that
the limiting distribution of consecutive variable is Gaussian as well if m has
an upper bound, say M . The framework of our proof is very similar to that
of Hong & White (2005)’s proof. Hence, the notations and most Lemmas and
Theorems below originate from the theory and Appendix in Hong & White (2005).
However, our theory is not a straightforward extension from pairwise variables to
m consecutive variable. There are some key points that need to be emphasized
in our theory because they are different from those in Hong & White (2005)’s
proof. In the following Lemmas, Theorems and the proofs in Appendix C.3, we
will highlight these key points where they need to be emphasized.

From now on, we abbreviate În(m,h) as În(m). Next we rewrite the estima-
tor (5.13), namely

În(m) =
1

n

∑
i∈Sn(m)

log

 f
(

x(m+1)
i

)
g
(

x(m)
i

)
g1(xi+m)

+ log

 f̂
(

x(m+1)
i

)
f
(

x(m+1)
i

)


− log

 ĝ
(

x(m)
i

)
g
(

x(m)
i

)
− log

[
ĝ1(xi+m)

g1(xi+m)

] ,

= Înm(f, g · g1) + Înm(f̂ , f)− Înm(ĝ, g)− În1(ĝ1, g1).

(5.19)
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Under the following null hypothesis:

H0 : f
(

X(m+1)
i

)
= g

(
X(m)

i

)
g1(Xi+m),

the first term in equation (5.19), Înm(f, g · g1) = 0 almost surely. Note that for
|x| < 1, we have the inequality

∣∣log(1 + x)− x+ 1
2
x2
∣∣ ≤ |x|3, so the third term

in equation (5.19) can be expressed as

Înm(ĝ, g) =
1

n

∑
i∈Sn(m)

log

1 + ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
 ,

=
1

n

n∑
i=1

 ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)


− 1

2

n∑
i=1

 ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
2

+ remainder,

= Ŵ1(m)− 1

2
Ŵ2(m) + remainder.

(5.20)

To obtain the order of the remainder term in equation (5.20), we need the
following assumption.

Assumption 2. Suppose {Xt} is strictly stationary time series with the support
I = [0, 1]. Let G : I→ R+ be the marginal density of Xt. On support I, G is away
from 0 and has twice continuously differentiation G(2)(·). Furthermore, G(2)(·)
satisfies the Lipschitz condition, i.e., for any x1, x2 ∈ I,

∣∣G(2)(x1)− G(2)(x2)∣∣ ≤
L |x1 − x2|, where L is the Lipschitz constant.

Moreover, at the bounds 0 and 1, the first and second derivatives of G(·)
are defined by their right-hand derivative and left-hand derivative respectively.
Assumption 2 is quite general and can avoid the slower convergence rate at the
bounds of I (e.g., Hall, 1988; Robinson, 1991; Hong & White, 2005).

For the remainder term in equation (5.20), we have

Lemma 5.2. Given H0, under Assumptions 1 and 2, if nhm/ logn→∞, h→ 0

and m < M . The order of the remainder term in equation (5.20) is

Op

(
n−3/2h−3m/2(logn)1/2 +m2h6

)
.

Remark 5.2. The powers of h and log(n) in Lemma 5.2 are different to the pow-
ers in Lemma A.5 (Appendix A, Hong & White, 2005, p. 871), because Equation
(B11) (Hong & White, 2005, p. 897) quoted the results of Theorem 5.3 (Fan &
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Yao, 2003, p. 208)1. However, Hong & White (2005) claimed the uniform conver-
gence rate (for univariate) as Op(n

−1/2
j h−1 log(nj) + h2)[nj = n − j]. According

to Li & Racine (2007, pp. 30–32), the uniform convergence rate for univariate
should be Op(n

−1/2h−1/2 log(n)1/2 + h2). We also notice that Hong & White
(2005) put max1≤t≤n in Equation (B11) where index t indicates a density func-
tion depending on t. By reading the detailed proof of uniform rate of convergence
for kernel density estimation (KDE), the uniform rate does not depend on f(·),
see Section 1.12 in Li & Racine (2007). Considering that Hong & White (2005)
did not clarify how to obtain the Equation (B11) and our theory did not include
the parameter t, so we adopt the uniform rate of convergence result proposed
for univariate (Li & Racine, 2007, p. 32), see also equation (C.9). Hence, from
now on, even our framework of theory is as same as Hong & White (2005)’s, but
the convergence rate is different (not just bringing in m) for each Lemma and
Theorem below.

To expand the term Ŵ1(m), we need to introduce some notations: for any
vector z1, z2 ∈ Im, define ḡ(z1) =

∫
Im K

(m)
h (z1, z2)g(z2)dz2, where K(m)

h (z1, z2) =

K(m)
h (z1 − z2). Let

K̃(m)
h (z1, z2) = K(m)

h (z1, z2)−
∫
Im
K(m)

h (z, z2)dz,

Ãnm(z1, z2) =
[
K̃(m)

h (z1, z2)−
∫
Im
K̃(m)

h (z1, z)g(z)dz
]
/g(z1),

Anm(z1, z2) =
[
K(m)

h (z1, z2)−
∫
Im
K(m)

h (z1, z)g(z)dz
]
/g(z1), (5.21)

γnm(z1, z2) =
∫
Im

[
K(m)

h (z, z2)−
∫
Im
K(m)

h (z, z∗)g(z∗)dz∗
]
dz/g(z1),

Bnm(z1) =
[∫

Im
K(m)

h (z1, z)g(z)dz− g(z1)
]
/g(z1),

H1nm(z1, z2) = Ãnm(z1, z2) + Ãnm(z2, z1), (5.22)

H2nm(z1, z2) =
∫
Im
Anm(z, z1)Anm(z, z2)g(z) dz,

Ĉn(m) =
1

n

∑n

i=1

∫
z∈Im

Anm

(
z, x(m)

i

)
Bnm(z)g(z) dz, (5.23)

1In fact, the order in Theorem 5.3 should be Op(log1/2(T )/(Th)1/2), the power should be
1/2 which is mended in Section 5.7 in Fan & Yao (2003, p. 212).
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then, we have

Ŵ1(m) =
1

2

(
n

2

)−1 n∑
j=2

j−1∑
i=1

[
Ãnm

(
x(m)
i , x(m)

j

)
+ Ãnm

(
x(m)
j , x(m)

i

)]
+

1

2

(
n

2

)−1 n∑
j=2

j−1∑
i=1

[
γnm

(
x(m)
i , x(m)

j

)
+ γnm

(
x(m)
j , x(m)

i

)]
+

1

n

n∑
i=1

Bnm

(
x(m)
i

)
,

=
1

2
Ĥ1n(m) +

1

2
Γ̂n(m) + B̂n(m).

(5.24)

Next, we discuss the expansion of second term in equation (5.20). We write

Ŵ2(m) = Ŵ21(m) + Ŵ22(m) + Ŵ23(m), (5.25)

where
Ŵ21(m) = n−1

∑n

i=1

[(
ĝ
(

x(m)
i

)
− ḡ

(
x(m)
i

))/
g
(

x(m)
i

)]2
,

Ŵ22(m) = n−1
∑n

i=1

[(
ḡ
(

x(m)
i

)
− g

(
x(m)
i

))/
g
(

x(m)
i

)]2
,

and

Ŵ23(m) =
2

n

n∑
i=1

 ĝ
(

x(m)
i

)
− ḡ

(
x(m)
i

)
g
(

x(m)
i

)
 ḡ

(
x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
 .

Let Dnm(z1, z2) = A2
nm(z1, z2) + A2

nm(z2, z1) and

H̃2nm(z1, z2, z3) = Anm(z1, z2)Anm(z1, z3) + Anm(z2, z3)Anm(z2, z1)
+ Anm(z3, z1)Anm(z3, z2),

then after some simple calculations, we can obtain

Ŵ21(m) =
1

2(n− 1)
D̂n(m) +

1

3

n− 2

n− 1
H̃2n(m), (5.26)

where D̂n(m) =
(
n
2

)−1∑n
j=2

∑j−1
i=1 Dnm(x(m)

i , x(m)
j ) and

H̃2n(m) =
(
n
3

)−1∑n
k=3

∑k−1
j=2

∑j−1
i=1 H̃2nm(x(m)

k , x(m)
i , x(m)

j ). Combining Equations
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(5.20), (5.24), (5.25) and (5.26), we finally have

Înm(ĝ, g) =
1

2
Ĥ1n(m) +

1

2
Γ̂n(m) + B̂n(m)− 1

4(n− 1)
D̂n(m)

− n− 2

6(n− 1)
H̃2n(m)− 1

2
Ŵ22(m)− 1

2
Ŵ23(m)

+Op

(
(logn)1/2

n3/2h3m/2
+m2h6

)
.

(5.27)

Next, we will consider each term in equation (5.27) one by one.

Lemma 5.3. Given Assumptions 1 and 2, if h → 0 and m < M . Then under
H0, we have P (limn→∞ Γ̂n(m) = 0) = 1.

Remark 5.3. Lemma 5.3 is the version of Lemma A.6 in Hong & White (2005).

Lemma 5.4. Given Assumptions 1 and 2, if nhm → ∞, h → 0 and m < M ,
then under H0,

D̂n(m) = 2EA2
nm(z1, z2) +Op(n

−1/2m1/2h−m), (5.28)

where z1, z2 have no overlap variable.

Remark 5.4. In Lemma A.7 (Hong & White, 2005, p. 872), the remainder of
D̂n(j) has of order Op(n

−1
j h−3). However, the proof of Lemma A.7 (Hong &

White, 2005, p. 898) shows that the order is Op(n
−1/2
j h−2). We have checked and

confirmed that the proof of Lemma A.7 (Hong & White, 2005, p. 898) is correct.
Therefore, the remainder in Lemma 5.4 is of order Op(n

−1/2m1/2h−m).

Lemma 5.5. Given Assumptions 1 and 2, if nhm → ∞, h → 0 and m < M ,
then under H0,

H̃2n(m) = 3Ĥ2n(m) +Op(n
−3/2m3/2h−m), (5.29)

where Ĥ2n(m) is defined in equation (5.30).

Ĥ2n(m) =

(
n

2

)−1∑n

j=2

∑j−1

i=1
H2nm

(
x(m)
i , x(m)

j

)
. (5.30)

Remark 5.5. Lemma 5.5 is the version of Lemma A.8 in Hong & White (2005).

Lemma 5.6. Given Assumptions 1 and 2, if nhm → ∞, h → 0 and m < M ,
then under H0,

Ŵ22(m) = EB2
nm

(
x(m)
1

)
+Op(n

−1/2h4).

Remark 5.6. Lemma 5.6 is the version of Lemma A.9 in Hong & White (2005).

Lemma 5.7. Given Assumptions 1 and 2, if nhm → ∞, h → 0 and m < M ,
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then under H0,
Ŵ23(m) = 2Ĉn(m) +Op(n

−1mh2−m/2),

where Ĉn(m) is defined in equation (5.23).
Remark 5.7. Lemma 5.7 is the version of Lemma A.10 in Hong & White (2005).

Based on Lemma 5.3-Lemma 5.7, we immediately have Theorem 5.2.
Theorem 5.2. Given Assumptions 1 and 2, if 2 ≤ m < M , nhm → ∞,
nhm+12 → 0 and (logn)1/2/(nhm)→ 0, then under H0,

Înm(ĝ, g) =
1

2
Ĥn(m)− 1

2
Ln(m) +

[
B̂n(m)− Ĉn(m)

]
+ op(n

−1/2h−m/2),

where Ĥn(m) = Ĥ1n(m)−(n−2)/(n−1)Ĥ2n(m), Ln(m) = (n− 1)−1EA2
nm(z1, z2)+

EB2
nm(z1), z1, z2 ∈ Im and z1, z2 have no overlap variable,

Ĥ1n(m) =

(
n

2

)−1∑n

j=2

∑j−1

i=1
H1nm

(
x(m)
i , x(m)

j

)
,

Ĥ2n(m) =

(
n

2

)−1∑n

j=2

∑j−1

i=1
H2nm

(
x(m)
i , x(m)

j

)
.

The proof of Theorem 5.2 is straightforward which we omit here. Note that,
due to Remarks 5.1 and 5.2, the remainder in Theorem 5.2 is of order op(n−1/2h−1)

when m = 2 rather than op(n−1
j h−1) (Theorem A.1 Hong & White, 2005, p. 868).

It needs to point out that if the uniform rate of convergence claimed in Equation
(B11) (Hong & White, 2005, p. 897) is correct, then the condition nh4/ log(n)→
∞ in Theorem A.1 (Hong & White, 2005, p. 868) should be nh4/(log(n))2 →∞.

Similarly, we can obtain the corresponding results with g(·) being replaced
by g1(·) and f(·) respectively. Specifically, we have the following two theorems.
Theorem 5.3. Given Assumptions 1 and 2, if nhm+1 → ∞, nhm+13 → 0,
(logn)1/2/(nhm+1) → 0 and 1 ≤ m < M , for any vector z1, z2 ∈ Im+1, define
f̄(z1) =

∫
Im+1 K(m+1)

h (z1, z2)f(z2)dz2, where K(m+1)
h (z1, z2) = K(m+1)

h (z1 − z2). Let

K̃J
h (z1, z2) = K

(m+1)
h (z1, z2)−

∫
Im+1

K(m+1)
h (z, z2)dz,

Ãn(m+1)(z1, z2) =
[
K̃J

h (z1, z2)−
∫
Im+1

K̃J
h (z1, z)f(z)dz

]
/f(z1),

An(m+1)(z1, z2) =
[
K(m+1)

h (z1, z2)−
∫
Im+1

K(m+1)
h (z1, z)f(z)dz

]
/f(z1),

γn(m+1)(z1, z2) =
∫
Im+1

[
K(m+1)

h (z, z2)−
∫
Im+1

K(m+1)
h (z, z∗)f(z∗)dz∗

]
dz/f(z1),

Bn(m+1)(z1) =
[∫

Im+1

K(m+1)
h (z1, z)f(z)dz− f(z1)

]
/f(z1),
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H1n(m+1)(z1, z2) = Ãn(m+1)(z1, z2) + Ãn(m+1)(z2, z1),

H2n(m+1)(z1, z2) =
∫
Im+1

An(m+1)(z, z1)An(m+1)(z, z2)f(z) dz,

then under H0, we have

Înm(f̂ , f) =
1

2
Ĥn(m+ 1)− 1

2
Ln(m+ 1)

+
[
B̂n(m+ 1)− Ĉn(m+ 1)

]
+ op(n

−1/2h−(m+1)/2),

where Ĥn(m + 1) = Ĥ1n(m + 1) − (n − 2)/(n − 1)Ĥ2n(m + 1), Ln(m + 1) =

(n− 1)−1EA2
n(m+1)(z1, z2)+EB2

n(m+1)(z1), z1, z2 ∈ Im+1 and z1, z2 have no overlap
variable,

Ĥ1n(m+ 1) =

(
n

2

)−1∑n

j=2

∑j−1

i=1
H1n(m+1)

(
x(m+1)
i , x(m+1)

j

)
,

Ĥ2n(m+ 1) =

(
n

2

)−1∑n

j=2

∑j−1

i=1
H2n(m+1)

(
x(m+1)
i , x(m+1)

j

)
,

B̂n(m+1) = n−1
∑n

i=1
Bn(m+1)

(
x(m+1)
i

)
,

and Ĉn(m+ 1) = n−1
∑n

i=1

∫
z∈Im+1 An(m+1)

(
z, x(m+1)

i

)
Bn(m+1)(z)f(z) dz.

Theorem 5.4. Given Assumptions 1 and 2, if nh → ∞, (logn)1/2/(nh) → 0,
nh13 → 0, for any vector z1, z2 ∈ I, define ḡ1(z1) =

∫ 1

0
KJ

h (z1, z2)g1(z2)dz2, where
KJ

h (z1, z2) = KJ
h (z1 − z2). Let

K̃J
h (z1, z2) = KJ

h (z1, z2)−
∫ 1

0

KJ
h (z, z2)dz,

ãn(z1, z2) =

[
K̃J

h (z1, z2)−
∫ 1

0

K̃J
h (z1, z)g1(z)dz

]
/g1(z1),

an(z1, z2) =

[
KJ

h (z1, z2)−
∫ 1

0

KJ
h (z1, z)g1(z)dz

]
/g1(z1),

γn(z1, z2) =

∫ 1

0

[
KJ

h (z, z2)−
∫ 1

0

KJ
h (z, z

∗)g1(z
∗)dz∗

]
dz/g1(z1),

bn(z1) =

[∫ 1

0

KJ
h (z1, z)g1(z)dz − g1(z1)

]
/g1(z1),

v1n(z1, z2) = ãn(z1, z2) + ãn(z2, z1),

v2n(z1, z2) =

∫ 1

0

an(z, z1)an(z, z2)g1(z) dz,
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then under H0, we have

În1(ĝ1, g1) = 2−1(V̂n − ln) + [b̂n − ĉn] + op(n
−1/2h−1/2),

where V̂n = V̂1n−(n−2)/(n−1)V̂2n, ln = (n− 1)−1Ea2n(z1, z2)+Eb2n(z1), z1, z2 ∈ I,

V̂1n =

(
n

2

)−1∑n

j=2

∑j−1

i=1
v1n (xi+m, xj+m) ,

V̂2n =

(
n

2

)−1∑n

j=2

∑j−1

i=1
v2n (xi+m, xj+m) ,

b̂n = n−1
∑n

i=1
bn (xi+m) ,

and ĉn = n−1
∑n

i=1

∫
z∈I an(z, xi+m)bn(z)g1(z) dz.

By Theorems 5.2, 5.3 and 5.4, we have

2În(m) = Înm(f, g · g1) + Înm(f̂ , f)− Înm(ĝ, g)− În1(ĝ1, g1),

=
[
Ĥn(m+ 1)− Ĥn(m)− V̂n

]
− (n− 1)−1

[
EA2

n(m+1)(z1, z2)− EA2
n(m)(y1, y2)− Ea2n(z1m, z2m)

]
−
[
EB2

n(m+1)(z1)− EB2
n(m)(y1)− Eb2n(z1m)

]
+ 2

[
B̂n(m+ 1)− B̂n(m)− b̂n

]
− 2

[
Ĉn(m+ 1)− Ĉn(m)− ĉn

]
+ op(n

−1/2h−(m+1)/2),

(5.31)
where z1 = (z10, . . . , z1(m−1), z1m)

T = (yT
1 , z1m)

T , z2 = (z20, . . . , z2(m−1), z2m)
T =

(yT
2 , z2m)

T . Next, we summarize the expansion of the items in equation (5.31) in
Lemmas 5.8, 5.9 and 5.10 respectively. The proofs can be found in Appendix C.3.

Lemma 5.8. Given Assumptions 1 and 2, under H0, we have

(n−1)−1
[
EA2

n(m+1)(z1, z2)− EA2
n(m)(y1, y2)− Ea2n(z1m, z2m)

]
= d0+O(n

−1h−m),

where κ =
∫ 1

−1
K2(u) du and d0 = (n− 1)−1κm+1h−(m+1).

Remark 5.8. Lemma 5.8 is the version of Lemma A.1 in Hong & White (2005).

Lemma 5.9. Given H0 and 1 ≤ m < M ,

2
[
B̂n(m+ 1)− B̂n(m)− b̂n

]
−
[
EB2

n(m+1)(z1)− EB2
n(m)(y1)− Eb2n(z1m)

]
= O(h6) +Op(n

−1/2h4).

Remark 5.9. Lemma 5.9 is the combination of Lemma A.2 and Lemma A.3
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in Hong & White (2005).

Lemma 5.10. Given H0 and 1 ≤ m < M ,

Ĉn(m+ 1)− Ĉn(m)− ĉn = Op(n
−1/2h4),

where Ĉn(m + 1) = n−1
∑n

i=1 C̆m+1(x(m+1)
i ), Ĉn(m) = n−1

∑n
i=1 C̆m(x(m)

i ), ĉn =

n−1
∑n

i=1 c̆(xi+m), z1 = (z10, . . . , z1(m−1), z1m)
T = (yT

1 , z1m)
T ,

C̆m+1

(
x(m+1)
i

)
=

∫
z1∈Im+1

An(m+1)

(
z1, x(m+1)

i

)
Bn(m+1)(z1)f(z1) dz1,

C̆m

(
x(m)
i

)
=

∫
y1∈Im

Anm

(
y1, x(m)

i

)
Bnm(y1)g(y1) dy1,

c̆(xi+m) =

∫ 1

0

an (z1m, xi+m) bn(z1m)g1(z1m) dz1m.

Remark 5.10. Lemma 5.10 is the version of Lemma A.4 in Hong & White (2005).

By Lemmas (5.8)–(5.10), we have

2În(m) + d0 = Ĥn(m+ 1)− Ĥn(m)− V̂n + op(n
−1/2h−(m+1)/2).

Recalling that z1 and z2 may have common variables in multivariate U -statistics,
it is impossible to apply the central limit theorem of U -statistics to our case
directly. So we need to divide Ĥn(m+ 1)− Ĥn(m)− V̂n into two parts: one part
includes independent components of z1 and z2, the other part includes dependent
components of z1 and z2. We rewrite

Ĥ1n(m) =

(
n

2

)−1 n∑
j=1+m

j−m∑
i=1

H1nm

(
x(m)
i , x(m)

j

)
+

(
n

2

)−1 n∑
j=2

j−1∑
i=1∨(j−m+1)

H1nm

(
x(m)
i , x(m)

j

)
,

= T1n(m) + T1n0(m),

Ĥ2n(m) =

(
n

2

)−1 n∑
j=1+m

j−m∑
i=1

H2nm

(
x(m)
i , x(m)

j

)
+

(
n

2

)−1 n∑
j=2

j−1∑
i=1∨(j−m+1)

H2nm

(
x(m)
i , x(m)

j

)
,

= T2n(m) + T2n0(m).

Similarly, Ĥ1n(m + 1) = T1n(m + 1) + T1n0(m + 1), Ĥ2n(m + 1) = T2n(m + 1) +
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T2n0(m+ 1). We have the following Lemma:

Lemma 5.11. Given H0, Assumptions 1 and 2, if nhm+1 → ∞, nhm+13 → 0,
(logn)1/2/(nhm+1)→ 0 and 1 ≤ m < M , we have EH̆n = −d1+op(n−1/2h−(m+1)/2)

where τ =
∫ 1

−1

∫ 1

−1
K(u)K(u+v) du dv, d1 = (n−2)/(n−1)[c1(τm+1−1)−c2(τm−

1)] and H̆n = Ĥn(m+ 1)− Ĥn(m)− V̂n
Finally, we prove the limiting distribution of RlEn is Gaussian with the rate

√
nh(m+1)/2 in Theorem 5.5.

Theorem 5.5. Given Assumptions 1 and 2, if nhm+1 → ∞, nhm+13 → 0,
(logn)1/2/(nhm+1)→ 0 and 1 ≤ m < M , under H0, we have

√
nh(m+1)/2

[
2În(m) + d0 + d1

]
d−→ N(0, σ2

∗), (5.32)

where σ2
∗ = 2βκm + β1τ

m
1 + 2β2τ

m
2 , τ1 =

∫ 1

−1

[∫ 1

−1
K(u)K(u+ v) du

]2
dv, τ2 =∫ 1

−1

∫ 1

−1
K(u)K(v)K(u + v) du dv and β = 2n(n − m)(n − m + 1)/[n2(n− 1)2],

β1 = β(n− 2)2/(n− 1)2 and β2 = β(n− 2)/(n− 1).

The proofs of above Lemmas and Theorems are in Appendix C.3. U -statistics
plays a significant role in the proof of RlEn consistency, Appendix C.4 includes
two lemmas about the second and third-order U -statistics. In this section, we
assume m can be arbitrarily large but be bounded by M . It is desirable to relieve
this limitation and let M go to infinity at a suitable rate, say M = O(log(log(n))).
This type extension of our theory is trivial and the effect of M →∞ needs to be
carefully scrutinized, which will not be discussed here. Next, we carry out several
numerical examples and real dataset analysis to evaluate our theory.

5.4 Numerical Study

5.4.1 Case 1

This case is related to the nonlinear time series. Model 1 comes from Section
8.4 in Fan & Yao (2003), we change Model 2 according to Mode 1 to make them
different.

Model 1: xi = −xi−2 exp
(
−x2i−2/2

)
+ (1 + x2i−2)

−1 cos(αxi−2)xi−1 + ε1i,

Model 2: yi = −yi−2 exp
(
−y2i−2/2

)
+ (1 + y2i−2)

−1 sin(αyi−2)yi−1 + ε2i,

where ε1i and ε2i are Gaussian white noise with zero mean and variance 0.12 and
α = 1.5. Let N = 400, we generate P1 = 30 time series from Model 1 and another
P2 = 70 time series from Model 2. Let P = P1+P2, in this case, the change-point
is 31. The initial values of x1, x2, y1, y2 are all 1. In the first step, Algorithm 1 is
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implemented, and we found this algorithm can choose the correct lag order, i.e.,
m̂ = 2. Next, we apply our relative entropy to the simulated dataset, compute
the RlEn values for each time series. Figure 5.1 shows our method can exactly
identify the change point. Furthermore, we randomly draw α from interval [0, π]
for 150 times, and repeat the previous procedures for each α using ApEn and
RlEn methods. The change-points detected by RlEn are 28, 29, 30, 31, 32,
33 and 34, see Table 5.2. This result shows that the accuracy of change-point
detection based on RlEn and ApEn are 89.33% and 16% respectively. In this
case, RlEn performs better than ApEn.

Table 5.2: The Change-point Detection Based on ApEn and RlEn

Change-point 28 29 30 31 32 33 34
ApEn 5 6 6 24 13 5 33
RlEn 1 0 5 134 7 2 1

2 4 6 8 10
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Figure 5.1: Result of Case 1

5.4.2 Case 2

Suppose there are two AR(3) processes:

Process 1: xi = ϕ1xi−1 + ϕ2xi−2 + ϕ3xi−3 + ε1i, (5.33)

Process 2: yi = ϕ∗
1yi−1 + ϕ∗

2yi−2 + ϕ∗
3yi−3 + ε2i, (5.34)
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where ε1i, ε2i are white noise with zero mean and variance σ2
1, σ2

2 respectively. It
is easy to verify that the variance of xi is σ2

1/(1− ϕ1ρ1 − ϕ2ρ2 − ϕ3ρ3) where

ρ1 = −(ϕ1 + ϕ2 ϕ3)/ϕd,

ρ2 = −(ϕ2
1 + ϕ3 ϕ1 − ϕ2

2 + ϕ2)/ϕd,

ρ3 = −(ϕ3
1 + ϕ1

2 ϕ3 + c1ϕ1 + c2)/ϕd,

(5.35)

and ϕd = ϕ2
3+ϕ1 ϕ3+ϕ2−1, c1 = −ϕ2

2+2ϕ2−ϕ3
2, c2 = ϕ2

2 ϕ3−ϕ2 ϕ3−ϕ3
3+ϕ3.

Suppose xi and yi have the same variance, then

σ2
2 = σ2

1

1− ϕ∗
1ρ

∗
1 − ϕ∗

2ρ
∗
2 − ϕ∗

3ρ
∗
3

1− ϕ1ρ1 − ϕ2ρ2 − ϕ3ρ3
, (5.36)

where ρ∗1, ρ
∗
2, ρ

∗
3 are the expressions of equation (5.35) with ϕ1, ϕ2, ϕ3 replaced

by ϕ∗
1, ϕ

∗
2, ϕ

∗
3. We let ϕ1 = 0.8, ϕ∗

1 = 0.7, ϕ2 = ϕ∗
2 = −0.3, ϕ3 = ϕ∗

3 = 0.1

and σ2
1 = 0.1, σ2

2 is obtained according to equation (5.36), i.e., 0.1168. We let
N = 500, then generate P1 = 60 and P2 = 40 time series from Process 1 and
Process 2 respectively. Denote P = P1+P2, the change point is 61. To investigate
the robustness of RlEn with respect to the selection of m, we appropriately allow
m to change from 1 to 6. For each m, both RlEn and ApEn are calculated using
the same time series. ApEn uses the algorithm in Pincus (1991) except the pre-
specified m. Last, repeat the above estimation procedure J = 150 times. Let
τ represent the change-point, we define the mean absolute distance (MAD) as
τ̄ = J−1

∑J
j=1 |τj − 61|.

Table 5.3 shows the comparison results between RlEn and ApEn. The RlEn’s
MAD is consistently smaller than that of ApEn for m = 1, . . . , 6. The ‘failure’
columns in Table 5.3 represent the number of no change-point detected. The rest
columns list the number of exactly detecting τ = 61. RlEn method can identify
the change-point for the 150 repetitions, out of which there are at least 105 exact
detections. However, ApEn is not as robust as RlEn when m is large, for instance,
when m = 6, the number of exactly detecting τ = 61 is 0 and the failure number
of finding change-point is 116 for ApEn method. Especially, as Pincus (1991)’s
suggestion, m = 2 is not a suitable choice in this simulation. Furthermore, this
study also verifies that our RlEn is robust with respect to the lag order. Even
m is misspecified, the MAD is still less than 0.45. This conclusion coincides with
our theorems in the ARMA processes, see Section 5.2.1.
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Table 5.3: The Comparison Between RlEn and ApEn for Different m in Case 2

m
RlEn ApEn

MAD Failure τ = 61 MAD Failure τ = 61

1 0.3667 0 112/150 0.5733 0 101/150
2 0.4200 0 111/150 34.1591 106 0/150
3 0.3600 0 112/150 1.5200 0 62/150
4 0.4267 0 110/150 2.4698 1 51/150
5 0.4067 0 110/150 11.3868 44 10/150
6 0.4400 0 105/150 32.6471 116 0/150

5.4.3 Case 3

This case is designed to evaluate the performance of change-point detection
in nonlinear time series models:

Model 1: xi = 0.138 + (0.316 + 0.982xi−1)e
−3.89x2

i−1 + ε1i,

Model 2: yi = −0.437− (0.659 + 1.260yi−1)e
−3.89y2i−1 + ε2i.

We let N = 500, then generate P1 = 160 and P2 = 80 time series from Model
1 and Model 2 respectively. Denote P = P1 + P2, the change point is 161.
To investigate the robustness of RlEn with respect to the selection of m, we
appropriately allow m to change from 1 to 8. The other settings are as same as
Case 2. Table 5.4 summaries the comparison between RlEn and ApEn. We can
obtain the same conclusion as Case 2.

Table 5.4: The Comparison Between RlEn and ApEn for Different m in Case 3

m
RlEn ApEn

MAD Failure τ = 161 MAD Failure τ = 161

1 0.2333 0 123/150 0.3067 0 114/150
2 0.2200 0 123/150 85.80 110 0/150
3 0.3000 0 116/150 1.120 0 79/150
4 0.4333 0 106/150 2.4467 0 51/150
5 0.4467 0 104/150 12.1727 11 19/150
6 0.3533 0 111/150 38.4800 100 2/150
7 0.4133 0 107/150 88.5385 137 0/150
8 0.4800 0 104/150 105.667 144 0/150
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5.5 Real Data Analysis

5.5.1 Muscle Contraction Data from Single Subject

The real data contains 659977 observations which are recorded at each mil-
lisecond. Figure 5.2(a) shows the dataset. Each contraction can be identified by a
rise in torque output. From Figure 5.2(a), we can also obtain the fact that there is
a short sharp rise after every five tests. There are 10 short sharp rises which divide
the data into 11 small periods. Figure 5.2(a) shows that there are lots of noise

(a) All contractions (b) One contraction

Figure 5.2: Muscle Contraction Data

data in the observations. We need to extract the useful observations. We first
cut the small periods into five pieces, each piece contains about 10000 (depends
on the situation) observations. For each piece, see Figure 5.2(b), we extract 5000
consecutive observations which the moving variance is minimum. For details,
let ai, i = 1, . . . , 10000 represent the 10000 observations, Ai = (ai, . . . , ai+4999)

denotes the consecutive 5000 observations, then the minimum moving variance
of As can be found at s = arg mini(Var(Ai), i = 1, . . . , 5001). Furthermore, we
also use Butterworth method (Butterworth, 1930) to filter the time series before
extraction. Figure 5.3(a) shows 52 extractions after using Butterworth Filter.
Figure 5.3(b) shows the result of change-point detection, the two change points
are 16 and 22.

To verify the performance of RlEn, we further divide the time series into
three groups based on Figure 5.3(b), namely, Group 1, 2 and 3. For each group,
we obtain a seasonal ARIMA(p, d, q) process. Again, 52 new time series are
generated from the new seasonal ARIMA processes. Then we regard them as
observations and apply our RlEn to these new observations to check whether our
approach can detect the change-points correctly.

First, we need to estimate three seasonal ARIMA processes, for simplicity, let
L be the lag operator notation, i.e., Lixt = xt−i. We found that this sport dataset
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(a) All Extractions (b) RlEn

Figure 5.3: The Results of Extractions and Change-point Detection

is more complex than we expected, the degree of integration for three groups are
2, 2 and 2 respectively according to the Augmented Dickey-Fuller test. The real
sport dataset contains seasonal effect and seasonal difference for the three groups
as well, so it is a better choice to build the seasonal ARIMA processes2:

ϕ(L)Φ(L)(1− L)D(1− Ls)Dsxt = c+ θ(L)εt,

where ϕ(L) = 1 − ϕ1L − · · · − ϕpL
p and θ(L) = 1 + θ1L + · · · + θqL

q represent
the AR and MA operator polynomials. Φ(L) = 1 − Φp1L

p1 − Φp2L
p2 − · · · −

ΦpsL
ps is seasonal auto-regressive operator polynomials. (1− Ls)Ds is the so-

called Seasonal Difference factor, for more details of seasonal ARIMA, see Section
9.9 in Hyndman & Athanasopoulos (2013). The order of Φ(L) is determined by
the spectrum analysis of time series. We use Bayesian Information Criterion
(BIC) to choose the order p and q in ϕ(L) and θ(L).

Based on the average time series of each group, we have got three processes:

Process 1 : D = 2, Ds = 1, p̂ = 2,

q̂ = 2, s = 75, c = 2.9993× 10−6,

ϕ̂(L) = 1− 1.9414L+ 0.693L2,

θ̂(L) = 1 + 1.82984L+ 0.9931L2,

Φ̂(L) = 1− 0.02037L75, σ̂2 = 2× 10−7.

2https://uk.mathworks.com/help/econ/seasonal-arima-sarima-model.html

https://uk.mathworks.com/help/econ/seasonal-arima-sarima-model.html
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(a) Group 1 (b) Group 2

(c) Group 3

Figure 5.4: The Divided Groups

Process 2 : D = 2, Ds = 1, p̂ = 2,

q̂ = 2, s = 67, c = 2.1477× 10−6,

ϕ̂(L) = 1− 1.9631L+ 0.9851L2,

θ̂(L) = 1 + 1.9619L+ 0.9910L2,

Φ̂(L) = 1 + 0.2818L67, σ̂2 = 2× 10−7.

Process 3 : D = 2, Ds = 1, p̂ = 2,

q̂ = 1, s = 81, c = 3.9159× 10−7,

ϕ̂(L) = 1− 1.9768L+ 0.98801L2,

Φ̂(L) = 1− 0.1474L81,

θ̂(L) = 1 + 0.3421L, σ̂2 = 2× 10−7.

The details of Processes 1, 2 and 3 can be found in Appendix C.6. The number
of time series generated from Processes 1, 2 and 3 are 15, 6 and 31 respectively.
Figure 5.5 shows our method can detect the change-points exactly at 16 and 22.
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Figure 5.5: Change-point Detection for the New Simulation Dataset

5.5.2 Multi-subjects Muscle Contraction Dataset

This dataset consists of 11 subjects’ muscle contraction observations. Each
subject needs to perform a series of intermittent isometric contractions (six sec-
onds for contraction and four seconds for rest) until to task failure (Pethick et al.,
2016). Therefore, the number of each subject contractions is not consistent, see
Table 5.5. The sampling frequency is 1 kHz. We found that the Figures 5.4(a)
and 5.4(b) share the similar patterns, and both are significantly different to Fig-
ure 5.4(c). Hence, in this study, we only find one change-point. Furthermore,
based on the analysis of selection of m in Cases 2 and 3, the selection of m
is not sensitive to the change-point detection. In many research fields, ApEn
is frequently employed to evaluate the complexity of signals (e.g., Richman &
Moorman, 2000; Burioka et al., 2005; Pethick et al., 2016, and among others).
Considering the computational complexity, we set m = 2 to coordinate with
ApEn. The change-point detections based on RlEn for each subject are summa-
rized in Table 5.5. In contrast, we also obtain the change-point results based on
ApEn, see Table 5.6. The parameter settings for ApEn follow the suggestions
in Pincus (1991).

In Tables 5.5 and 5.6, Nc represents the number of contractions in the series
of experiments. CP stands for the change-point detected by ApEn or RlEn.
CP/Nc is the relative location of change-point (in percentage) compared with
Nc. RlEn1(std.), RlEn2(std.), ApEn1(std.) and ApEn2(std.) stand for the two
groups entropy averages (standard deviation) for RlEn and ApEn respectively.
The last column shows the p-values of t-test for mean comparison of two groups.

In Table 5.5, we can conclude that the intermittent isometric contractions
of each subject can be divided into two groups which are supported by the p-
values in the last column. The averages of RlEn in the first group RlEn1 are
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Table 5.5: Result of Change-point Detection Based on RlEn

Subject Nc CP CP/Nc RlEn1(std.) RlEn2(std.) p-value
1 70 22 31.43% 4.0315(0.2065) 4.2406(0.2129) 4.30e-04
2 38 11 28.95% 3.6582(0.1889) 4.3606(0.2218) 1.22e-08
3 54 23 42.59% 3.8257(0.2571) 4.5578(0.2871) 4.52e-13
4 79 54 68.35% 4.1137(0.2065) 4.3692(0.2502) 5.12e-05
5 289 236 81.66% 3.4292(0.2286) 3.8779(0.2563) 1.07e-18
6 54 40 74.07% 3.8749(0.2395) 4.6409(0.1624) 5.78e-16
7 80 49 61.25% 3.6241(0.2112) 4.1233(0.2889) 2.81e-11
8 177 78 44.07% 4.1200(0.2251) 4.4312(0.1759) 4.03e-18
9 52 23 44.23% 3.7092(0.1310) 4.3786(0.2141) 1.31e-18
10 87 19 21.84% 3.9454(0.1881) 4.3561(0.1665) 1.05e-08
11 89 38 42.70% 3.9879(0.1999) 4.4219(0.2508) 3.62e-14

Table 5.6: Result of Change-point Detection Based on ApEn

Subject Nc CP CP/Nc ApEn1(std.) ApEn2(std.) p-value
1 70 68 97.14% 0.0062(0.0023) 0.0114(0.0050) 0.215
2 38 10 26.32% 0.0134(0.0043) 0.0037(0.0018) 1.15e-04
3 54 18 33.33% 0.0181(0.0067) 0.0040(0.0025) 1.33e-07
4 79 – – – – –
5 289 239 82.70% 0.0139(0.0053) 0.0073(0.0031) 1.64e-22
6 54 26 48.15% 0.0144(0.0046) 0.0040(0.0031) 5.22e-12
7 80 48 60.00% 0.0129(0.0042) 0.0059(0.0030) 4.54e-13
8 177 78 44.07% 0.0068(0.0019) 0.0047(0.0013) 8.36e-13
9 52 19 36.54% 0.0231(0.0059) 0.0046(0.0031) 1.94e-11
10 87 33 37.93% 0.0098(0.0023) 0.0063(0.0026) 5.80e-09
11 89 39 43.82% 0.0123(0.0031) 0.0047(0.0021) 4.41e-19
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consistently smaller than RlEn2. It is not surprising because muscle fatigue will
increase the entropy of contraction signals (Pethick et al., 2016). According to
CP/Nc, Subject 5 has the largest relative location of change-point while Subject
2’s is just 21.84%. Compared to other subjects, it means that the contraction
torques are stable and Subject 5 can keep the stable contraction for a long time.

In Table 5.6, the “–” represents the failure of change-point detection based
on ApEn. Besides, the p-value of t-test for Subject 1 is even larger than 0.1,
which means the change-point, 68, is not statistically reliable. It is also worth
pointing out that for Subject 10, the change-point based on ApEn is 33 but is
19 based on RlEn. Figure 5.6 shows the two divided groups using ApEn and
RlEn respectively. It is clear that the group in Figure 5.6(a) is more stable than
the group illustrated by Figure 5.6(c). Moreover, there is no need to compare
the averages of ApEn and RlEn because ApEn has two free parameters and is
not transformation invariant. The change-points of other subjects are almost the
same for both ApEn and RlEn.

(a) RlEn, First 18 Contractions (b) RlEn, Last 69 Contractions

(c) ApEn, First 32 Contractions (d) ApEn, Last 55 Contractions

Figure 5.6: Divided Groups for Subject 10

Cases 1-3 show that the RlEn is less sensitive to the lag order m and better
than ApEn. Combining the results of muscle contraction data, i.e., Figure 5.6,
Tables 5.5 and 5.6, our RlEn performs better than the ApEn.
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5.5.3 Covid-19 Dataset Analysis

We collect the daily confirmed cases data of each Country (Region) all over
the world from the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University3. As of this thesis writing, the Covid-19 virus is in the midst
of a global pandemic. This dataset includes daily confirmed report data from
January 20th 2020 to February 1st 2021 only. This dataset excludes the confirmed
cases in Diamond Princess, Grand Princess and MS Zaandam cruise ships. We
also delete the Country (Region) whose total confirmed cases are less than 100
until February 1st 2021. There are 180 Countries (Regions) left in this dataset.

Since the time of the first confirmed case in each country is different and the
ability to spread Covid-19 virus varies from country to country, each Country’s
(Region’s) time series starts from the date on which this Country’s (Region’s)
total confirmed cases are larger than 100. Therefore, this dataset is unbalanced.
Each time series is self-normalized by its maximum daily confirmed-cases number.
We apply nonparametric relative entropy method to each Country’s (Region’s)
time series, choose 8 as the lag order for the Countries (Regions), see Figure 5.7(a).
Because the Country’s (Region’s) RlEns in this case are not time-related, we can-
not find the change-point directly. Our goal is to divide the Countries (Regions)
into two groups according to their RlEns. Why we divide it into two groups rather
than three groups or other number of groups? we divided them into two groups
based on the result of Figure 5.7(b). It seems that dividing two groups is more
appropriate than dividing three groups. So, we sort the RlEns in ascending order,
then find the change-point by detecting the changes both in mean and slope of
ranked RlEns, see Lavielle (2005) and Killick et al. (2012) for more details.

The change point is 168, see Figure 5.7(b). To illustrate the two groups,

(a) the selection of m (b) change-point detection

Figure 5.7: Covid-19 Dataset Analysis

we use bubbles to represent the RlEn in Figure 5.8. The red colour shows the
3https://github.com/CSSEGISandData/COVID-19

https://github.com/CSSEGISandData/COVID-19
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Countries (Regions) which have a high RlEn value. The blue colour represents
the rest. The diameter of bubble is proportional to the RlEn value. Relative

Figure 5.8: The Global RlEn

entropy describes the divergence between two different distributions. A large
value of RlEn implies a big divergence. The red bubbles in Figure 5.8 represent
Russia, Belarus, India, Iran, Algeria, Indonesia, Saudi Arabia, Iraq, Egypt, Syria,
Argentina, Netherlands, West Bank and Gaza. In Appendix C.6, Figures C.4(a)–
C.4(d) show the normalized daily new cases for countries: Russia, Belarus, India
and Iran respectively. These countries are amid the second wave of pandemic.
Moreover, we also compare US, UK, Singapore, China with the previous four
countries, see Figures C.4(e)–C.4(h). The RlEn of United States is 1.055, the
UK’s is 0.831 because UK kept the curve under control (flatter than US’s during
the first wave) before September 2020. It is not surprising because the flat part of
time series is less complex than the rest of time series, hence UK has a lower RlEn
comparing with US which implies that the curve of new daily confirmed cases in
UK has higher predicability than that in US, because entropy can be treated as a
measure of chaos. Here, predictability is a quantitative degree to describe how a
time series can be correctly predicted. This conclusion can also be verified by the
time series of Singapore and China in Figures C.4(g) and C.4(h). It needs to be
clarified that the application of Covid-19 dataset is just to compare the relative
entropy of time series. It should not be used to determine which country is better
in battling with Covid-19 because many variables such as ability of government
management, medical capacity, technology level, etc are excluded from our simple
application. The evaluation of government performances all over the world is a
complicated task which we will not discuss here.
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5.6 Conclusion

In this chapter, we have proposed a nonparametric relative entropy as a
testing statistic to detect the change-points of time series segments. For the
ARMA processes under strictly stationary assumption, the relative entropy is free
of background noise and only be determined by the auto-regressive coefficients.
Especially, when the lag order m is larger than the underlying lag order p of
auto-regression, the relative entropy no longer changes. This merit in essence
originates from the cut-off tail property of partial auto-correlation function in
AR(p) process. In nonparametric setting, we have developed a type of leave-one-
out relative entropy. Given Assumptions 1 and 2, we have proved that the relative
entropy has a limiting normal distribution with of order

√
nh(m+1)/2. Similarly, we

have also discussed the selection of lag order m. We suggest using BIC to select
m and if m has an upper bound, a theory of the selection of m can ensure the
consistency based on BIC from the point view of nonparametric regression. Three
simulations have shown that the relative entropy is appropriate to summaries the
information of a time series. Based on RlEn, one can find the change-points of
time series segments with high accurateness. Two real examples have shown that
our approach is effective in terms of change-point detection in practice as well.

There are some interesting issues such as: In nonparametric setting, could
the relative entropy be a constant like the ARMA processes when m is enough
large? How to speed up the computation of relative entropy? These questions
are beyond the scope of this chapter, we will not discuss them further.



Chapter 6

Conclusions and Future Works

In this chapter, we will draw conclusions on the two nonparametric models
and relative entropy we established in previous chapters and briefly introduce the
related future works.

6.1 Conclusions

In this thesis, we have carried out two novel nonparametric covariance models
for high-dimensional settings in Chapter 3 and Chapter 4 respectively. In Chap-
ter 5, we have proposed the RlEn as the statistic to detect the time of muscle
fatigue during a series of intermittent isometric contractions in sports science.

In particular, nonparametric covariance estimation is a big challenge in con-
temporary high-dimensional statistics. One of the critical issues for nonparamet-
ric covariance estimation is the effect of sparsity on the bandwidth selection. A
pilot study in Section 3.2.4 clearly shows that the bandwidth will go to infinity if
the sparsity becomes larger and larger. The wrong-selected bandwidth can bring
in extra errors in covariance matrix estimator if one uses a common bandwidth
to guarantee the positive definiteness. To address this issue, we have developed a
novel framework that includes multiple bandwidths in factorized band matrices
of the correlation coefficient matrix. Compared to the existing kernel methods
proposed by Yin et al. (2010) and Chen & Leng (2016), the straightforward bene-
fit is the improvement in reducing the Frobenius norm-based error, see the results
in Appendix A.

Moreover, we have employed the Frobenius norm-based criterion to avoid the
computation of precision matrix in high-dimensional settings. Our algorithm is
more efficient than DCM, see Figure 3.1. Furthermore, we have also developed
a consistency theory for factorized NCM. Under some sparsity conditions, our
proposal is consistent with the underlying covariance matrix as both the sample
size and the dimension tend to infinity. It is worthy noting that our theory holds
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not only for the i.i.d. case but also for the non i.i.d. case which means factorized
NCM could be applied to more flexible and complex scenarios. Numerical sim-
ulations (including non i.i.d. case) shows that factorized NCM and its variants
are consistently better than DCM in terms of the Frobenius norm-based loss. We
have also applied factorized NCM to an asset returns example to illustrate its
application in Finance.

The Factorized NCM method solves the sparsity effect problem from import-
ing multiple bandwidths in the band matrix factors. In contrast, the Divide-
and-Combine NCM addresses this problem from another point of view. Literally,
we divide the covariance matrix estimation into three steps: diagonal entry es-
timation, zero-entry detection and off-diagonal nonzero entry estimation. Once
completing these three steps, we put them together to form a new covariance
matrix estimator.

There are two advantages of Divide-and-Combine NCM. (1) The zero-entry
detection happens before the bandwidth selection. This means less zero entries
will affect the bandwidth selection of the off-diagonal nonzero entries. The essence
is to let the nonzero entries take over the bandwidth selection again via identifying
most zero entries. (2) We develop a framework for the nonparametric correlation
coefficient estimation with constraints. The core idea of this framework is to
solve a nonparametric cubic equation of correlation. Figure 4.1 clearly shows that
the constrained correlation estimator performs better than empirical correlation
estimator. The controversial issue is the positive definiteness of covariance matrix
using Divide-and-Combine framework. In Chapter 4, we modify the negative
definite covariance matrix by adding a suitable identity matrix to itself.

Furthermore, we have also applied the Divide-and-Combine framework to the
mean function estimation. The choice of local polynomial order will affect the
bandwidth selection. For instance, when the mean function partially consists
of constant functions, if one chooses the order of local polynomial be 0 (local
constant smoother), then the bandwidths of constant functions will tend to infin-
ity. Similarly, local linear smoother cannot be applied to bandwidth selection for
the linear functions. In Chapter 4, we have used local linear smoothers for the
nonlinear parts in mean function but detected the linear function by generalized
likelihood ratio statistics (Fan et al., 2001).

Considering the contributions from the variant methods, the framework of
Divide-and-Combine NCM are consistently better than Factorized NCM, see the
results in Appendix B.4.

In Chapter 5, we have suggested using the RlEn as the statistic to detect
the change-point for the segments of time series. Because of the transformation
invariant and background-noise-free properties, the RlEn is a more appropriate
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statistic to summary the information of a time series comparing ApEn, SpEn,
FzEn, etc. For ARMA(p, q) process, the RlEn is only determined by the auto-
regression and moving-averaging coefficients. Moreover, if the lag order of RlEn,
m, is larger than p in AR(p) process or larger than q + 1 in MA(q) process, then
the RlEn is no longer change, see the Lemmas and Theorems in §5.2.1.

In nonparametric settings, the selection of m is also critical. For complete-
ness, we have proposed a BIC criterion and developed a consistency theory of
m̂ which tends to the true underlying lag order m as n → ∞. We have also
developed the consistency theory for the RlEn and obtained its limiting distribu-
tion. The convergence rate is

√
nh(m+1)/2. Several numerical studies show that

the RlEn performs better than ApEn. Tables 5.3 and 5.4 imply that the RlEn
is not sensitive to m. In practice, if one can relax the selection of m, then we
suggest m = 2 following Pincus (1991). To show the application of RlEn, we have
implemented the whole procedure in two real world datasets.

6.2 Future Works

For the Divide-and-Combine NCM approach, we did not develop a corre-
sponding theory for the constrained nonparametric correlation estimator. Even
the results in Appendix B.4 are better than the Factorized NCM, the consistency
property and the convergence rate remain unsolved. Figure 4.1(b) clearly shows
that the convergence rate is much faster than that in the middle when the cor-
relation is near 1 or -1. To the best of our knowledge, there is no theory about
the nonparametric correlation with constraint in literature. In the future, we will
aim at the development of the consistency theory.

Another research direction is the positive definiteness of covariance matrix es-
timation. As the Remark 2 in Yin et al. (2010) pointed out, to satisfy the positive
definite property, the entries of nonparametric covariance matrix share the same
bandwidth. In this thesis, Factorized NCM employs band matrix factors with dif-
ferent bandwidths to guarantee the positive definite property. However, there is
no general criterion to choose the number of factors. In contrast, the Divide-and-
Combine NCM approach divides the covariance matrix into three parts. Even
we keep the off-diagonal nonzero entries sharing the same bandwidth, the com-
bination of these three steps cannot always make the estimator positive definite.
Thus, the conflict between one single bandwidth and positive definiteness in non-
parametric covariance model is not perfectly solved in high-dimensional settings.
We will seek the potential framework that can avoid this conflict.

As for the RlEn, the first task we concerned is to extend the theory to more
general case. In Theorem 5.5, the lag order m has an upper bound M where



M could be sufficient large but not tend to infinity as n. Theorem 5.1 inherits
this condition. However, without considering the Theorem 5.5, one can relax the
M to be of order O(

√
log(n)) or O(log(log(n))) in Theorem 5.1. Therefore, this

relaxation of M is determined by Theorem 5.5. From the proof of Theorem 5.5,
it is not straightforward because each convergence rate in Lemmas and previ-
ous Theorems needs to be carefully scrutinized and modified to keep the final
convergence rate.

The second task is the application of RlEn in Time Series Classification
(TSC). We have proved that the RlEn owns two desirable properties: transforma-
tion invariant and background-noise-free in theory. Therefore, RlEn summarizes
the information of time series. It could be regarded as a feature of time series
itself. So far, the feature-based TSC approaches did not consider the RlEn. It is
unclear whether the application to TSC could improve the accuracy of classifica-
tion. In machine learning, we will try to embed RlEn into the problem of Time
Series Classification in our future research.
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Appendix A

Results of Chapter 3

A.1 Deriving the Plug-in Optimal Shrinkage
Estimator and Factorization

The derivation of the optimal shrinkage can be divided into two steps.

Step 1: we find a population version, namely a linear combination of Ip and
Σ̂(t)(u), denoted as Σ∗(u) = ρaIp + (1− ρ)Σ̂(t)(u), whose expected Frobenius loss
E‖Σ∗(u)− Σ(u)‖2F attains the minimum with respect to 0 ≤ ρ ≤ 1 and a ∈ R.
For this purpose, we decompose the above expected quadratic loss as follows:

E‖Σ∗(u)− Σ(u)‖2F = E‖Σ∗(u)− E[Σ∗(u)] + E[Σ∗(u)]− Σ(u)‖2,

= (1− ρ)2E
∥∥∥Σ̂(t)(u)− E

[
Σ̂(t)(u)

]∥∥∥2
F

+
∥∥∥ρ (aIp − E

[
Σ(t)(u)

])
+ E

[
Σ̂(t)(u)

]
− Σ(u)

∥∥∥2
F
.

(A.1)

Differentiating the above loss with respect to a and setting it to zero, we have

dE‖Σ∗(u)− Σ(u)‖2F/da = 2ρ
〈
Ip, ρ

(
aIp − E

[
Σ̂(t)(u)

])
+E

[
Σ̂(t)(u)

]
− Σ(u)

〉
= 0,

which yields

a(u) =
〈
Ip,E

[
Σ̂(t)(u)

]〉
− ρ−1

〈
Ip,E

[
Σ̂(t)(u)

]
− Σ(u)

〉
.
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Substituting it back to (A.1), we have

E‖Σ∗(u)− Σ(u)‖2F = (1− ρ)2E
∥∥∥Σ̂(t)(u)− E

[
Σ̂(t)(u)

]∥∥∥2
+ ‖(1− ρ)Ah − A‖2F ,

= (1− ρ)2E‖Σ∗(u)− Σ(u)‖2 + ρ2‖Ah‖2F
+ ‖Ah − A‖2F − 2ρ〈Ah, Ah − A〉,

(A.2)

where

Ah(u) = E
[
Σ̂(t)(u)

]
−
〈
Ip,E

[
Σ̂(t)(u)

]〉
Ip,

A(u) = Σ(u)− 〈Ip,Σ(u)〉Ip.

Differentiating (A.2) with respect to ρ and setting it to zero, we have

− 2(1− ρ)E
∥∥∥Σ̂(t)(u)− Σ(u)

∥∥∥2 + 2ρ‖Ah(u)‖2F

− 2〈Ah(u), Ah(u)− A(u)〉 = 0.

Solving the above equation, we have the solution

ρh(u) =

(
0 ∨ β

2
h(u) +Qh(u)

β2
h(u) + α2

h(u)

)
∧ 1, (A.3)

where

α2
h(u) = ‖Ah‖2F , β2

h(u) = E
∥∥∥Σ̂(t)(u)− E

[
Σ̂(t)(u)

]∥∥∥2
F
,

Qh(u) = 〈Ah(u), Ah(u)− A(u)〉.

It is easy to see that αh(u) is a Frobenius norm of the residual of E
[
Σ̂(t)(u)

]
after its projection to the space spanned by the identity matrix Ip while β2

h(u)

is a Frobenius-type variance of Σ̂(t)(u). And Qh(u) is a bias effect of the kernel
smoothing. If replacing ρ in a(u) by ρh(u), then we have the solution

ah(u) =
〈
Ip,E

[
Σ̂(t)(u)

]〉
− ρ−1

h (u)
〈
Ip,E

[
Σ̂(t)(u)

]
− Σ(u)

〉
.

Therefore, the optimal solution Σ̂∗(u) to the above covariance optimization has
the form:

Σ̂∗(u) = ρh(u)ah(u)Ip + (1− ρh(u))Σ̂(t)(u).

Note that α2
h(u), β2

h(u) and Qh(u) in (A.3) depend on the unknown matrices
E
[
Σ̂(t)(u)

]
and Σ(u). So, in Step 2, we estimate them by the plug-in estimators

α̂2
p(u) and β̂2

p(u). It is easy to see that β̂2
p(u) is the squared Frobenius-norm of
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the variance estimators of σ̂jk(u)’s. For simplicity, we shrink Qh(u) to zero, since
Qh(u) = o(α2

h(u)). Combining the above two steps gives the desired estimator of
Σ(u). The derivation is completed.

(a) (b)
Note: Before-financial-crisis: (a) Plots of estimated means µ̂k(ui)
against i (top), estimated individual volatility σ̂kk(ui) against i
(middle) and ui against i (bottom). (b) Plots of estimated µ̂k(u)
against u (left) and estimated individual volatility σ̂kk(u) against u
right. Similarly, (a) and (b) in Figure A.2 for the in-financial-crisis
period while (a) and (b) in Figure A.3 for the after-financial-crisis.

Figure A.1: Before-financial-crisis
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(a) (b)

Figure A.2: In-financial-crisis

(a) (b)

Figure A.3: After-financial-crisis

A.2 Tables
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Table A.9: The Average SEN, SPE and ACC for Setting 1

n p

ρ = 0

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.7093 0.9931 0.9654 0.8674 0.9938 0.9815
100 0.6660 0.9976 0.9812 0.8093 0.9976 0.9883
150 0.6410 0.9987 0.9869 0.7723 0.9987 0.9913
300 0.5782 0.9996 0.9926 0.6839 0.9996 0.9944
500 0.5152 0.9998 0.9950 0.6240 0.9998 0.9961

200

50 0.9074 0.9949 0.9863 0.9790 0.9984 0.9965
100 0.8924 0.9980 0.9928 0.9684 0.9991 0.9976
150 0.8936 0.9989 0.9954 0.9620 0.9994 0.9982
300 0.8914 0.9996 0.9978 0.9447 0.9997 0.9988
500 0.8818 0.9998 0.9986 0.9316 0.9998 0.9992

500

50 0.9863 0.9988 0.9976 0.9998 1.0000 0.9999
100 0.9875 0.9996 0.9990 0.9998 1.0000 1.0000
150 0.9894 0.9998 0.9995 0.9998 1.0000 1.0000
300 0.9927 0.9999 0.9998 0.9996 1.0000 1.0000
500 0.9946 1.0000 0.9999 0.9996 1.0000 1.0000

Table A.10: The Average SEN, SPE and ACC for Setting 1 (continued)

n p

ρ = 0.3

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.7088 0.9880 0.9607 0.8597 0.9885 0.9759
100 0.6442 0.9963 0.9789 0.7844 0.9962 0.9858
150 0.6057 0.9980 0.9850 0.7375 0.9980 0.9894
300 0.5293 0.9993 0.9915 0.6436 0.9994 0.9935
500 0.4623 0.9997 0.9944 0.5773 0.9997 0.9955

200

50 0.8940 0.9923 0.9827 0.9720 0.9960 0.9937
100 0.8782 0.9969 0.9911 0.9570 0.9984 0.9963
150 0.8764 0.9983 0.9943 0.9469 0.9990 0.9973
300 0.8660 0.9992 0.9970 0.9248 0.9995 0.9983
500 0.8486 0.9996 0.9981 0.9053 0.9997 0.9988

500

50 0.9838 0.9981 0.9967 0.9998 0.9998 0.9998
100 0.9847 0.9993 0.9986 0.9996 0.9999 0.9999
150 0.9858 0.9997 0.9992 0.9994 1.0000 0.9999
300 0.9895 0.9999 0.9997 0.9989 1.0000 1.0000
500 0.9914 1.0000 0.9999 0.9988 1.0000 1.0000
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Table A.11: The Average SEN, SPE and ACC for Setting 1 (continued)

n p

ρ = 0.8

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.9835 0.1074 0.1929 0.9895 0.0802 0.1690
100 0.9930 0.0517 0.0982 0.9943 0.0441 0.0910
150 0.9957 0.0341 0.0659 0.9960 0.0314 0.0633
300 0.9972 0.0213 0.0375 0.9977 0.0197 0.0359
500 0.9982 0.0147 0.0245 0.9985 0.0136 0.0234

200

50 0.9935 0.1367 0.2203 0.9979 0.0810 0.1705
100 0.9976 0.0651 0.1112 0.9988 0.0490 0.0959
150 0.9986 0.0435 0.0751 0.9992 0.0318 0.0638
300 0.9993 0.0224 0.0386 0.9995 0.0200 0.0363
500 0.9996 0.0153 0.0251 0.9997 0.0137 0.0236

500

50 0.9971 0.2226 0.2982 1.0000 0.0840 0.1734
100 0.9997 0.1050 0.1492 1.0000 0.0522 0.0990
150 0.9999 0.0626 0.0936 1.0000 0.0356 0.0675
300 1.0000 0.0280 0.0442 1.0000 0.0204 0.0367
500 1.0000 0.0174 0.0272 1.0000 0.0150 0.0248

Table A.12: The Average SEN, SPE and ACC for Setting 2

n p

ρ = 0

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.0425 0/0 0.0425 0.0583 0/0 0.0583
100 0.0189 0/0 0.0189 0.0251 0/0 0.0251
150 0.0120 0/0 0.0120 0.0154 0/0 0.0154
300 0.0054 0/0 0.0054 0.0065 0/0 0.0065
500 0.0029 0/0 0.0029 0.0034 0/0 0.0034

200

50 0.0580 0/0 0.0580 0.0647 0/0 0.0647
100 0.0280 0/0 0.0280 0.0314 0/0 0.0314
150 0.0186 0/0 0.0186 0.0206 0/0 0.0206
300 0.0090 0/0 0.0090 0.0099 0/0 0.0099
500 0.0053 0/0 0.0053 0.0058 0/0 0.0058

500

50 0.0659 0/0 0.0659 0.0747 0/0 0.0747
100 0.0320 0/0 0.0320 0.0350 0/0 0.0350
150 0.0212 0/0 0.0212 0.0225 0/0 0.0225
300 0.0104 0/0 0.0104 0.0107 0/0 0.0107
500 0.0062 0/0 0.0062 0.0063 0/0 0.0063

152



Table A.13: The Average SEN, SPE and ACC for Setting 2 (continued)

n p

ρ = 0.3

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.0419 0/0 0.0419 0.0591 0/0 0.0591
100 0.0189 0/0 0.0189 0.0251 0/0 0.0251
150 0.0117 0/0 0.0117 0.0150 0/0 0.0150
300 0.0051 0/0 0.0051 0.0061 0/0 0.0061
500 0.0028 0/0 0.0028 0.0033 0/0 0.0033

200

50 0.0604 0/0 0.0604 0.0668 0/0 0.0668
100 0.0285 0/0 0.0285 0.0322 0/0 0.0322
150 0.0186 0/0 0.0186 0.0209 0/0 0.0209
300 0.0091 0/0 0.0091 0.0100 0/0 0.0100
500 0.0052 0/0 0.0052 0.0057 0/0 0.0057

500

50 0.0665 0/0 0.0665 0.0776 0/0 0.0776
100 0.0324 0/0 0.0324 0.0353 0/0 0.0353
150 0.0214 0/0 0.0214 0.0226 0/0 0.0226
300 0.0105 0/0 0.0105 0.0107 0/0 0.0107
500 0.0062 0/0 0.0062 0.0063 0/0 0.0063

Table A.14: The Average SEN, SPE and ACC for Setting 2 (continued)

n p

ρ = 0.8

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.8940 0/0 0.8940 0.9316 0/0 0.9316
100 0.9485 0/0 0.9485 0.9610 0/0 0.9610
150 0.9641 0/0 0.9641 0.9693 0/0 0.9693
300 0.9792 0/0 0.9792 0.9813 0/0 0.9813
500 0.9853 0/0 0.9853 0.9864 0/0 0.9864

200

50 0.8771 0/0 0.8771 0.9281 0/0 0.9281
100 0.9383 0/0 0.9383 0.9583 0/0 0.9583
150 0.9597 0/0 0.9597 0.9683 0/0 0.9683
300 0.9778 0/0 0.9778 0.9811 0/0 0.9811
500 0.9852 0/0 0.9852 0.9859 0/0 0.9859

500

50 0.8152 0/0 0.8152 0.9213 0/0 0.9213
100 0.9157 0/0 0.9157 0.9503 0/0 0.9503
150 0.9435 0/0 0.9435 0.9647 0/0 0.9647
300 0.9723 0/0 0.9723 0.9789 0/0 0.9789
500 0.9834 0/0 0.9834 0.9863 0/0 0.9863
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Table A.15: The Average SEN, SPE and ACC for Setting 3

n p

ρ = 0

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.2947 0.9914 0.8716 0.3408 0.9939 0.8816
100 0.3245 0.9979 0.9387 0.2876 0.9981 0.9356
150 0.2858 0.9992 0.9571 0.2531 0.9990 0.9549
300 0.2360 0.9998 0.9771 0.2058 0.9996 0.9760
500 0.2160 0.9999 0.9859 0.1856 0.9998 0.9852

200

50 0.3642 0.9939 0.8856 0.4960 0.9940 0.9083
100 0.3403 0.9983 0.9404 0.4453 0.9977 0.9491
150 0.4732 0.9985 0.9675 0.4300 0.9983 0.9647
300 0.4757 0.9994 0.9838 0.3883 0.9991 0.9809
500 0.4760 0.9997 0.9903 0.3510 0.9995 0.9878

500

50 0.4915 0.9931 0.9068 0.6694 0.9940 0.9381
100 0.4512 0.9979 0.9497 0.6402 0.9981 0.9666
150 0.4422 0.9989 0.9660 0.6155 0.9990 0.9763
300 0.4776 0.9995 0.9840 0.5770 0.9994 0.9869
500 0.6483 0.9998 0.9935 0.5489 0.9995 0.9914

Table A.16: The Average SEN, SPE and ACC for Setting 3 (continued)

n p

ρ = 0.3

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.2909 0.9912 0.8707 0.3440 0.9900 0.8789
100 0.3110 0.9978 0.9373 0.2866 0.9976 0.9351
150 0.2727 0.9990 0.9561 0.2474 0.9988 0.9544
300 0.2233 0.9998 0.9767 0.2040 0.9996 0.9759
500 0.2020 0.9999 0.9856 0.1822 0.9998 0.9852

200

50 0.3622 0.9932 0.8847 0.4872 0.9935 0.9064
100 0.3410 0.9978 0.9400 0.4471 0.9969 0.9485
150 0.4648 0.9982 0.9666 0.4264 0.9978 0.9640
300 0.4588 0.9992 0.9831 0.3806 0.9989 0.9805
500 0.4598 0.9996 0.9899 0.3465 0.9993 0.9876

500

50 0.4872 0.9923 0.9054 0.6647 0.9929 0.9364
100 0.4477 0.9977 0.9493 0.6311 0.9977 0.9654
150 0.4418 0.9986 0.9657 0.6101 0.9986 0.9756
300 0.4731 0.9994 0.9838 0.5680 0.9992 0.9864
500 0.6402 0.9996 0.9932 0.5391 0.9994 0.9911
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Table A.17: The Average SEN, SPE and ACC for Setting 3 (continued)

n p

ρ = 0.8

DCM1 and sDCM1 tNCM1 and stNCM1

SEN SPE ACC SEN SPE ACC

100

50 0.4976 0.7072 0.6712 0.8213 0.2994 0.3892
100 0.8604 0.2424 0.2967 0.9117 0.1550 0.2216
150 0.8883 0.1771 0.2191 0.9344 0.1094 0.1582
300 0.9804 0.0520 0.0796 0.9720 0.0541 0.0814
500 0.9903 0.0286 0.0458 0.9864 0.0308 0.0479

200

50 0.4877 0.8299 0.7710 0.9114 0.2552 0.3681
100 0.4795 0.8178 0.7880 0.9563 0.1256 0.1987
150 0.7759 0.3762 0.3998 0.9716 0.0809 0.1335
300 0.9857 0.0503 0.0781 0.9856 0.0417 0.0698
500 0.9919 0.0306 0.0478 0.9903 0.0281 0.0453

500

50 0.5392 0.9389 0.8702 0.8696 0.4875 0.5532
100 0.4640 0.9823 0.9367 0.9512 0.2192 0.2836
150 0.4564 0.9862 0.9548 0.9750 0.1162 0.1669
300 0.4930 0.9796 0.9652 0.9904 0.0474 0.0755
500 0.9917 0.0470 0.0639 0.9938 0.0308 0.0480
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Appendix B

Proofs and Results of Chapter 4

B.1 The Derivative of CV Function

The objective function is

cv(h3) =

p∑
j=1

n∑
i=1

[
y2ij

σ̂jj(−i)(ui)
+ log

(
σ̂jj(−i)(ui)

)]
,

=

p∑
j=1

n∑
i=1

[
y2ij

exp
[
α̂j(−i)(ui)

] + α̂j(−i)(ui)

]
,

where

α̂j(−i)(ui) = log


n∑

s=1,s ̸=i

[
y2sj

exp(β̂j(−i)(ui)(us−ui))

]
Kh3(us − ui)

n∑
s=1,s ̸=i

Kh3(us − ui)

 ,

= log(Aji).

Suppose, given index j and for each ui, we have already obtained the β̂j(−i)(ui).
Furthermore, let Bji(us) = y2sj/ exp(β̂j(−i)(ui)(us − ui)), then

Aji =

n∑
s=1,s ̸=i

Bji(us)Kh3(us − ui)

n∑
s=1,s ̸=i

Kh3(us − ui)
.

The first and second derivative of function cv(h3) are:

∂cv(h3)

∂h3
=

p∑
j=1

n∑
i=1

[
−
y2ij
A2

ji

+
1

Aji

]
∂Aji

∂h3
,
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∂2cv(h3)

∂h23
=

p∑
j=1

n∑
i=1

{[
2y2ij
A3

ji

− 1

A2
ji

] [
∂Aji

∂h3

]2
+

[
−
y2ij
A2

ji

+
1

Aji

]
∂2Aji

∂h23

}
.

Before we calculate these two parts: ∂Aji/∂h3 and ∂2Aji/∂h
2
3, we need to intro-

duce some notations. The kernel function we adopted here is standard normal
density function, i.e.,

Kh3(us − ui) =
1

h3
√
2π

exp
[
−(us − ui)2

2h23

]
,

then the first and second derivative of kernel function with respect to h3 can be
expressed as:

K ′
h3
(us − ui) =

1

h3

[
−1 +

(
us − ui
h3

)2
]
Kh3(us − ui),

= Ci(us)Kh3(us − ui),

and

K ′′
h3
(us − ui) =

1

h23

[
2− 5

(
us − ui
h3

)2

+

(
us − ui
h3

)4
]
Kh3(us − ui),

= Di(us)Kh3(us − ui).

Furthermore, denote

SBKji =
n∑

s=1,s ̸=i

Bji(us)Kh3(us − ui),

SKi =
n∑

s=1,s ̸=i

Kh3(us − ui).

For simplicity, let ϑji = β̂j(−i)(ui), then we have

Bji(us) =
y2sj

exp(ϑji(us − ui))
,

∂Bji(us)

∂h3
= −

y2sj(us − ui)
exp(ϑji(us − ui))

∗ ∂ϑji

∂h3
,

= −Bji(us) ∗ (us − ui) ∗
∂ϑji

∂h3
,
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and

∂2Bji(us)

∂h23
= −∂Bji(us)

∂h3
∗ (us − ui) ∗

∂ϑji

∂h3
− Bji(us) ∗ (us − ui) ∗

∂2ϑji

∂h23
,

= Bji(us) ∗ (us − ui)2 ∗
(
∂ϑji

∂h3

)2

− Bji(us) ∗ (us − ui) ∗
∂2ϑji

∂h23
.

Based on these notations, the first derivative of SBKji and SKji with respect to
h3 are

∂SBKji

∂h3
= −∂ϑji

∂h3

n∑
s=1,s ̸=i

Bji(us)(us − ui)Kh3(us − ui)

+
n∑

s=1,s ̸=i

Bji(us)Ci(us)Kh3(us − ui),

= −∂ϑji

∂h3
SBUKji + SBCKji,

and

∂SKi

∂h3
=

n∑
s=1,s ̸=i

Ci(us)Kh3(us − ui) = SCKi.

So

∂Aji

∂h3
= −∂ϑji

∂h3

SBUKji

SKi

+
SBCKji

SKi

− Aji
SCKi

SKi

.

To compute ∂2Aji/∂h
2
3, we need ∂2ϑji/∂h

2
3, ∂SBUKji/∂h3, ∂SBCKji/∂h3 and

∂SCKi/∂h3 respectively. The ∂2ϑji/∂h
2
3 is remained to discuss later.

SBUKji =
n∑

j=1,j ̸=i

Bji(us)(us − ui)Kh3(us − ui),

∂SBUKji

∂h3
= −∂ϑji

∂h3

n∑
j=1,j ̸=i

Bji(us)(us − ui)2Kh3(us − ui),

+
n∑

j=1,j ̸=i

Bji(us)(us − ui)Ci(us)Kh3(us − ui)

= −∂ϑji

∂h3
SBU2Kji + SBUCKji,
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∂SBCKji

∂h3
= −∂ϑji

∂h3

n∑
j=1,j ̸=i

Bji(us)(us − ui)Ci(us)Kh3(us − ui) +

n∑
j=1,j ̸=i

Bji(us)Di(us)Kh3(us − ui),

= −∂ϑji

∂h3
SBUCKji + SBDKji,

SCKi =
n∑

j=1,j ̸=i

Ci(us)Kh3(us − ui),

∂SCKi

∂h3
=

n∑
j=1,j ̸=i

Di(us)Kh3(us − ui) = SDKi,

then

∂
SBUKji

SKi

∂h3
= −∂ϑji

∂h3

SBU2Kji

SKi

+
SBUCKji

SKi

− SBUKji

SKi

SCKi

SKi

,

∂
SBCKji

SKi

∂h3
= −∂ϑji

∂h3

SBUCKji

SKi

+
SBDKji

SKi

− SBCKji

SKi

SCKi

SKi

,

∂ SCKi

SKi

∂h3
=

SDKi

SKi

− SCKi

SKi

SCKi

SKi

,

so

∂2Aji

∂h23
= −∂

2ϑji

∂h23

SBUKji

SKi

+

(
∂ϑji

∂h3

)2
SBU2Kji

SKi

− 2
∂ϑji

∂h3

SBUCKji

SKi

+
SBDKji

SKi

− 2
∂Aji

∂h3

SCKi

SKi

− Aji
SDKi

SKi

.

Basically, the unknown parts here are just ∂ϑji/∂h3 and ∂2ϑji/∂h
2
3. We notice

that SBUKji/SBKji = SUKi/SKi, f(ϑji) = SBUKji ·SKi−SBKji ·SUKi = 0

and

∂f(ϑji)

∂h3
= −∂ϑji

∂h3
SBU2Kji · SKi + SBUCKji · SKi + SBUKji · SCKi

+
∂ϑji

∂h3
SBUKji · SUKi − SCKji · SUKi − SBKji · SUCKi,

= 0.

Let P1 = SBUKji · SUKi − SBU2Kji · SKi and P2 = SCKji · SUKi + SBKji ·
SUCKi − SBUCKji · SKi − SBUKji · SCKi, then ∂ϑji/∂h3 = P2/P1. Taking
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the further derivation of both sides of P2/P1 with respect to h3, we obtain

∂2ϑji

∂h23
P1 +

∂ϑji

∂h3

∂P1

∂h3
=

∂P2

∂h3
,

∂2ϑji

∂h23
=

∂P2

∂h3
− ∂ϑji

∂h3

∂P1

∂h3

P1

.

Next, we calculate ∂P1/∂h3 and ∂P2/∂h3, denote

∂SUKi

∂h3
= SUCKi,

∂SBU2Kji

∂h3
= −∂ϑji

∂h3
SBU3Kji + SBU2CKji,

∂P1

∂h3
=
∂ϑji

∂h3
(SBU3Kji · SKi − SBU2Kji · SUKi)

+ (SBUCKji · SUKi + SBUKji · SUCKi

−SBU2CKji · SKi − SBU2Kji · SCKi) ,

=
∂ϑji

∂h3
G1 +G2.

We also denote

∂SUCKi

∂h3
= SUDKi,

∂SBUCKji

∂h3
= −∂ϑji

∂h3
SBU2CKji + SBUDKji,

then

∂P2

∂h3
= −∂ϑji

∂h3
G2

+ (SBDKji · SUKi + 2SCKi · SUCKi + SBKji · SUDKi

+− SBUDKji · SKi − 2SBUCKji · SCKi − SBUKji · SDK) ,

= −∂ϑji

∂h3
G2 +G3,

so

∂2ϑji

∂h23
=
G3 − 2G2

∂ϑji

∂h3
−G1

(
∂ϑji

∂h3

)2
P1

.

Finally, we obtain the parts except the β̂j(−i)(ui) to compute the first and second
derivative of cv(h3). We will show the details of solving equation (4.13) using
Newton-Raphson algorithm in the next section.
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B.2 The Details of Solving Nonlinear Equation

Recall that in the previous section, we briefly note β̂j(−i)(ui) using ϑji. We
construct new objective function g(ϑji) based on equation (4.13) and the previous
notations

g(ϑji) =

(
SBUKji

SBKji

− SUKi

SKi

)2

.

Notice that
∂Bji(us)

∂ϑji

= −Bji(us) ∗ (us − ui),

then the first derivation of g(ϑji) is

∂g

∂ϑji

= 2

(
SBUKji

SBKji

− SUKi

SKi

) ∂
SBUKji

SBKji

∂ϑji

,

where

∂
SBUKji

SBKji

∂ϑji

=

(
SBUKji

SBKji

)2

− SBU2Kji

SBKji

.

So
∂g

∂ϑji

= 2

(
SBUKji

SBKji

− SUKi

SKi

)[(
SBUKji

SBKji

)2

− SBU2Kji

SBKji

]
.

Then the second derivation is

∂2g

∂ϑ2
ji

= 2

[(
SBUKji

SBKji

)2

− SBU2Kji

SBKji

]2
+ 4

∂g

∂ϑji

SBUKji

SBKji

+ 2

(
SBUKji

SBKji

− SUKi

SKi

)(
SBU3Kji

SBKji

− SBU2Kji

SBKji

SBUKji

SBKji

)
.

Hence, at the t-th iteration, we can use the following equation to update ϑ(t+1)
ji :

ϑ
(t+1)
ji = ϑ

(t)
ji −

∂g
∂ϑji

∂2g
∂ϑ2

ji

∣∣∣∣∣∣
ϑji=ϑ

(t)
ji

.
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B.3 The Details of Bandwidth h3 Selection

According to objective function, we can easily get

∂cv(h3)

∂h3
= − 2

n

n∑
i=1

[
ς(ui)− θ̂−i(ui)

]T ∂θ̂−i(ui)

∂h3
,

∂2cv(h3)

∂h23
=

2

n

n∑
i=1


[
∂θ̂−i(ui)

∂h3

]T
∂θ̂−i(ui)

∂h3
−
[
ς(ui)− θ̂−i(ui)

]T ∂2θ̂−i(ui)

∂h23

 ,

so, we only need to compute two parts ∂θ̂−i(ui)/∂h3 and ∂2θ̂−i(ui)/∂h
2
3. For

simplicity, we denote θ̂−i(ui) as

θ̂−i(ui) =
SKV−i · SKU2− SKUV · SKU

SK−i · SKU2− SKU2
=
Q1

Q2

,

then ∂θ̂−i(ui)/∂h3 and ∂2θ̂−i(ui)/∂h
2
3 can be obtained as follows

∂θ̂−i(ui)

∂h3
=

Q′
1

Q2

− θ̂−i(ui)
Q′

2

Q2

,

∂2θ̂−i(ui)

∂h23
=

Q′′
1

Q2

− 2
∂θ̂−i(ui)

∂h3

Q′
2

Q2

− θ̂−i(ui)
Q′′

2

Q2

.

Hence, at last we only need to compute Q′
1, Q′

2, Q′′
1 and Q′′

2:

Q1 = SKV−i · SKU2− SKUV · SKU,

Q′
1 = SCKV−i · SKU2 + SKV−i · SCKU2

− SCKUV · SKU − SKUV · SCKU,

Q′′
1 = SDKV−i · SKU2 + 2SCKV−i · SCKU2 + SKV−i · SDKU2

− SDKUV · SKU − 2SCKUV · SCKU − SKUV · SDKU,

Q2 = SK−i · SKU2− SKU2,

Q′
2 = SCK−i · SKU2 + SK−i · SCKU2− 2SKU · SCKU,

Q′′
2 = SDK−i · SKU2 + 2SCK−i · SCKU2 + SK−i · SDKU2

− 2SCKU2 − 2SKU · SDKU,

where SK−i = SK − kh3(0), SCK−i = SCK + kh3(0)/h3, SDK−i = SDK −
2kh3(0)/h

2
3, SKV−i = SKV − kh3(0)ς(ui), SCKV−i = SCKV + kh3(0)ς(ui)/h3

and SDKV−i = SDKV − 2kh3(0)ς(ui)/h
2
3.

B.4 Tables
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Table B.1: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 2 with n = 200, p = 150

pct. stNCM1

DAC1 DAC2

Divided Direct Divided Direct
10% 0.2234(1.35) 0.1421(0.68) 0.1430(0.84) 0.1414(0.63) 0.1419(0.63)
30% 0.2154(1.07) 0.1409(0.68) 0.1431(0.67) 0.1403(0.64) 0.1417(0.63)
50% 0.2038(0.81) 0.1397(0.65) 0.1414(0.68) 0.1391(0.62) 0.1411(0.63)
70% 0.1888(0.67) 0.1386(0.67) 0.1414(0.66) 0.1382(0.64) 0.1408(0.64)
90% 0.1576(0.60) 0.1381(0.67) 0.1407(0.70) 0.1375(0.65) 0.1398(0.64)

Table B.2: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 3

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 1.1428(45.63) 0.5597(5.52) 0.06 0.5586(4.81) 0.05
100 0.8839(9.15) 0.6271(4.82) 0.06 0.6312(4.62) 0.05
150 0.8971(7.53) 0.6666(4.92) 0.06 0.6721(4.80) 0.05
300 0.8831(2.52) 0.7213(3.53) 0.06 0.7270(3.60) 0.06

200

50 0.6796(26.54) 0.3664(4.70) 0.01 0.3761(4.30) 0.01
100 0.6297(8.63) 0.4124(3.92) 0.02 0.4227(3.64) 0.01
150 0.6386(5.25) 0.4290(3.63) 0.02 0.4387(3.32) 0.02
300 0.6897(3.24) 0.4644(2.99) 0.02 0.4720(2.70) 0.02

500

50 0.2933(3.17) 0.2300(2.59) 0.01 0.2410(2.41) 0.01
100 0.3285(3.43) 0.2485(1.86) 0.01 0.2606(1.87) 0.01
150 0.3504(3.73) 0.2619(2.34) 0.01 0.2755(2.22) 0.01
300 0.3894(2.21) 0.2794(1.88) 0.01 0.2920(1.76) 0.01
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Table B.3: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 3 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.3

100

50 0.7345(6.03) 0.6365(5.86) 0.04 0.6367(5.78) 0.04
100 0.7955(4.40) 0.7155(5.17) 0.04 0.7130(4.66) 0.05
150 0.8302(3.50) 0.7412(3.79) 0.04 0.7394(4.00) 0.05
300 0.8791(2.73) 0.7980(3.74) 0.04 0.7957(3.78) 0.04

200

50 0.6045(4.96) 0.4361(4.33) 0.01 0.4371(4.26) 0.01
100 0.6369(3.67) 0.4796(4.26) 0.01 0.4819(4.11) 0.01
150 0.6612(3.58) 0.5087(3.67) 0.01 0.5117(3.81) 0.01
300 0.7017(2.95) 0.5511(3.27) 0.01 0.5525(3.07) 0.01

500

50 0.5283(2.78) 0.3030(2.77) 0.01 0.3116(2.80) 0.01
100 0.5599(2.09) 0.3330(2.25) 0.01 0.3406(2.30) 0.01
150 0.5653(2.17) 0.3371(1.89) 0.01 0.3451(1.83) 0.01
300 0.5817(1.70) 0.3472(1.67) 0.01 0.3543(1.62) 0.01

Table B.4: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 3 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.8

100

50 1.2338(5.37) 1.0927(2.74) 0.06 1.0764(2.18) 0.05
100 1.2501(3.86) 1.1304(2.21) 0.06 1.1156(1.93) 0.04
150 1.2492(3.38) 1.1436(2.59) 0.03 1.1295(1.58) 0.03
300 1.2654(3.05) 1.1687(4.64) 0.02 1.1502(1.42) 0.02

200

50 1.2210(3.88) 1.0536(3.27) 0.01 1.0220(1.75) 0.01
100 1.2230(3.37) 1.0950(3.23) 0.01 1.0553(1.70) 0.01
150 1.2362(3.22) 1.1071(2.92) 0.01 1.0691(0.93) 0.01
300 1.2390(2.66) 1.1334(3.60) 0.01 1.0938(1.77) 0.01

500

50 1.2261(2.62) 1.0501(2.92) 0.01 1.0281(1.97) 0.01
100 1.2422(0.62) 1.0902(3.49) 0.01 1.0543(1.01) 0.01
150 1.2463(1.36) 1.0980(2.63) 0.01 1.0630(0.70) 0.01
300 1.2533(0.33) 1.1263(3.95) 0.01 1.0780(1.31) 0.01
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Table B.5: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 4

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 0.2214(1.69) 0.2142(1.15) 0.03 0.2141(1.14) 0.03
100 0.2360(1.21) 0.2289(0.86) 0.02 0.2290(0.81) 0.02
150 0.2432(1.25) 0.2372(0.83) 0.02 0.2369(0.82) 0.02
300 0.2514(0.74) 0.2466(0.71) 0.02 0.2478(0.57) 0.02

200

50 0.1554(0.84) 0.1501(0.68) 0.01 0.1500(0.68) 0.01
100 0.1599(0.73) 0.1543(0.58) 0.01 0.1538(0.58) 0.01
150 0.1619(0.57) 0.1582(0.48) 0.01 0.1572(0.48) 0.01
300 0.1660(0.53) 0.1636(0.70) 0.01 0.1618(0.36) 0.01

500

50 0.1169(0.45) 0.1100(0.44) 0.03 0.1102(0.45) 0.03
100 0.1195(0.27) 0.1134(0.31) 0.03 0.1137(0.27) 0.02
150 0.1221(0.23) 0.1152(0.22) 0.01 0.1155(0.22) 0.01
300 0.1237(0.15) 0.1170(0.14) 0.01 0.1172(0.14) 0.01

Table B.6: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 4 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.3

100

50 0.2672(1.40) 0.2319(1.08) 0.03 0.2327(1.08) 0.03
100 0.2707(1.11) 0.2442(0.87) 0.02 0.2443(0.84) 0.02
150 0.2784(0.85) 0.2517(0.86) 0.02 0.2515(0.71) 0.02
300 0.2873(0.57) 0.2621(0.50) 0.02 0.2623(0.50) 0.02

200

50 0.2330(1.04) 0.1726(0.85) 0.02 0.1732(0.84) 0.02
100 0.2375(0.95) 0.1768(0.62) 0.01 0.1774(0.62) 0.01
150 0.2372(0.66) 0.1802(0.46) 0.01 0.1803(0.44) 0.01
300 0.2428(0.56) 0.1865(0.48) 0.01 0.1862(0.38) 0.01

500

50 0.2185(0.91) 0.1260(0.46) 0.01 0.1273(0.46) 0.02
100 0.2232(0.62) 0.1307(0.33) 0.01 0.1321(0.34) 0.01
150 0.2232(0.55) 0.1322(0.27) 0.01 0.1337(0.28) 0.01
300 0.2240(0.33) 0.1337(0.19) 0.01 0.1350(0.20) 0.01
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Table B.7: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 4 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.8

100

50 0.4906(2.45) 0.4161(0.74) 0.02 0.4137(0.59) 0.02
100 0.4969(2.50) 0.4229(0.55) 0.01 0.4212(0.50) 0.01
150 0.4961(2.28) 0.4310(0.40) 0.01 0.4293(0.43) 0.01
300 0.4932(1.66) 0.4455(0.47) 0.01 0.4462(0.38) 0.01

200

50 0.5154(1.13) 0.3986(0.64) 0.01 0.3934(0.53) 0.01
100 0.5129(1.01) 0.4024(0.50) 0.01 0.3978(0.39) 0.01
150 0.5157(1.07) 0.4038(0.28) 0.01 0.3999(0.25) 0.01
300 0.5154(0.94) 0.4085(0.21) 0.01 0.4053(0.17) 0.01

500

50 0.5177(0.41) 0.3912(0.68) 0.01 0.3850(0.27) 0.01
100 0.5184(0.34) 0.3939(0.42) 0.01 0.3892(0.20) 0.01
150 0.5192(0.20) 0.3957(0.35) 0.01 0.3914(0.18) 0.01
300 0.5193(0.16) 0.3992(0.23) 0.01 0.3956(0.14) 0.01
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Table B.11: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 4

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 0.6392(7.05) 0.5687(4.80) 0.03 0.5848(4.86) 0.03
100 0.8031(11.48) 0.6515(5.39) 0.02 0.6743(5.65) 0.02
150 0.8870(15.00) 0.6967(6.06) 0.02 0.7235(6.26) 0.02
300 0.9513(13.70) 0.7237(5.58) 0.02 0.7709(4.88) 0.02

200

50 0.4235(3.16) 0.3893(3.08) 0.01 0.4024(2.92) 0.01
100 0.4767(5.06) 0.4249(3.17) 0.01 0.4391(3.19) 0.01
150 0.5142(4.82) 0.4551(2.59) 0.01 0.4683(2.40) 0.01
300 0.5770(7.68) 0.4952(3.25) 0.01 0.5070(3.14) 0.01

500

50 0.3217(2.15) 0.2708(2.16) 0.03 0.2847(2.09) 0.03
100 0.3501(1.98) 0.2878(1.31) 0.03 0.3045(1.25) 0.02
150 0.3773(2.10) 0.3033(1.53) 0.01 0.3196(1.57) 0.01
300 0.4037(2.35) 0.3157(1.29) 0.01 0.3329(1.15) 0.01

Table B.12: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 4 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.3

100

50 0.6518(3.48) 0.5916(3.46) 0.03 0.5963(3.43) 0.03
100 0.6874(2.55) 0.6555(3.38) 0.02 0.6622(3.63) 0.02
150 0.7089(2.07) 0.6907(3.17) 0.02 0.7005(3.33) 0.02
300 0.7441(1.90) 0.7354(2.87) 0.02 0.7495(2.98) 0.02

200

50 0.5592(2.72) 0.4463(3.27) 0.02 0.4516(3.21) 0.02
100 0.5899(2.79) 0.4789(2.76) 0.01 0.4843(2.84) 0.01
150 0.6032(2.25) 0.5011(2.43) 0.01 0.5042(2.12) 0.01
300 0.6341(1.75) 0.5363(2.10) 0.01 0.5382(2.11) 0.01

500

50 0.5089(2.30) 0.3202(2.07) 0.01 0.3279(2.03) 0.02
100 0.5330(1.35) 0.3501(1.58) 0.01 0.3570(1.54) 0.01
150 0.5387(1.16) 0.3597(1.34) 0.01 0.3669(1.33) 0.01
300 0.5467(0.87) 0.3708(1.13) 0.01 0.3769(1.10) 0.01
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Table B.13: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 4 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.8

100

50 0.9628(3.11) 0.8785(2.30) 0.02 0.8653(1.60) 0.02
100 0.9798(2.81) 0.9184(2.44) 0.01 0.8965(1.79) 0.01
150 0.9834(2.49) 0.9659(3.56) 0.01 0.9378(2.47) 0.01
300 0.9863(1.73) 1.1226(7.94) 0.01 1.1361(8.25) 0.01

200

50 0.9779(2.34) 0.8458(2.57) 0.01 0.8278(1.44) 0.01
100 0.9785(2.06) 0.8679(2.50) 0.01 0.8490(1.08) 0.01
150 0.9864(2.19) 0.8755(0.96) 0.01 0.8588(0.71) 0.01
300 0.9903(1.89) 0.8937(1.33) 0.01 0.8774(0.59) 0.01

500

50 0.9880(0.79) 0.8316(1.94) 0.01 0.8129(0.89) 0.01
100 0.9964(0.70) 0.8535(2.54) 0.01 0.8351(0.56) 0.01
150 1.0009(0.33) 0.8651(2.22) 0.01 0.8460(0.49) 0.01
300 1.0050(0.24) 0.8836(1.78) 0.01 0.8633(0.47) 0.01

Table B.14: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 5

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 0.3531(2.23) 0.3165(1.67) 0.10 0.3122(0.93) 0.10
100 0.3412(0.93) 0.3320(1.06) 0.10 0.3279(0.62) 0.10
150 0.3990(2.11) 0.3445(1.01) 0.10 0.3387(0.53) 0.10
300 0.4109(0.23) 0.3555(0.95) 0.10 0.3494(0.37) 0.10

200

50 0.2644(1.23) 0.2484(1.22) 0.10 0.2439(0.93) 0.10
100 0.2745(1.37) 0.2630(1.57) 0.10 0.2561(0.73) 0.10
150 0.2876(1.63) 0.2726(1.33) 0.10 0.2646(0.51) 0.10
300 0.2854(1.09) 0.2833(0.73) 0.10 0.2749(0.32) 0.10

500

50 0.1950(0.80) 0.1839(1.38) 0.10 0.1785(0.95) 0.10
100 0.2152(0.64) 0.1920(0.64) 0.10 0.1866(0.61) 0.10
150 0.2322(0.57) 0.1990(0.66) 0.10 0.1942(0.47) 0.10
300 0.2625(0.33) 0.2094(0.54) 0.10 0.2044(0.38) 0.10
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Table B.15: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 5 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.3

100

50 0.3299(1.17) 0.3258(1.17) 0.10 0.3249(0.88) 0.10
100 0.3450(0.97) 0.3429(1.45) 0.10 0.3396(0.59) 0.10
150 0.3542(0.77) 0.3532(1.17) 0.10 0.3495(0.49) 0.10
300 0.3652(0.79) 0.3647(0.93) 0.09 0.3607(0.31) 0.09

200

50 0.2807(1.19) 0.2591(1.56) 0.10 0.2566(0.92) 0.10
100 0.2943(0.73) 0.2714(1.04) 0.10 0.2685(0.57) 0.10
150 0.3039(0.67) 0.2852(1.58) 0.09 0.2786(0.50) 0.10
300 0.3198(0.36) 0.2964(0.72) 0.07 0.2901(0.35) 0.07

500

50 0.2293(1.08) 0.1972(1.88) 0.10 0.1936(0.89) 0.10
100 0.2476(0.74) 0.2057(0.61) 0.10 0.2043(0.60) 0.09
150 0.2576(0.63) 0.2140(0.58) 0.10 0.2122(0.55) 0.10
300 0.2728(0.42) 0.2246(0.38) 0.07 0.2223(0.33) 0.08

Table B.16: The Average (standard error in %) of Frobenius Norm-based IRSE for
Scenario 5 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.8

100

50 0.4619(1.91) 0.4087(0.69) 0.10 0.4114(0.56) 0.10
100 0.4757(1.82) 0.4252(0.56) 0.10 0.4276(0.41) 0.10
150 0.4829(1.85) 0.4330(0.38) 0.06 0.4357(0.33) 0.06
300 0.4841(1.94) 0.4399(0.32) 0.04 0.4424(0.18) 0.03

200

50 0.4787(0.44) 0.3809(1.12) 0.10 0.3773(0.58) 0.10
100 0.4864(0.31) 0.3927(0.49) 0.04 0.3917(0.40) 0.04
150 0.4925(0.26) 0.4005(0.45) 0.03 0.3993(0.34) 0.03
300 0.4931(0.17) 0.4083(0.26) 0.02 0.4075(0.23) 0.01

500

50 0.4613(0.43) 0.3700(0.47) 0.08 0.3692(0.43) 0.08
100 0.4698(0.29) 0.3782(0.33) 0.03 0.3770(0.30) 0.03
150 0.4758(0.22) 0.3853(0.30) 0.03 0.3837(0.28) 0.02
300 0.4768(0.16) 0.3869(0.20) 0.01 0.3851(0.18) 0.01
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Table B.20: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 5

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0

100

50 1.2162(11.74) 0.8466(5.58) 0.10 0.8525(4.35) 0.10
100 1.0491(10.92) 0.9348(4.75) 0.10 0.9399(3.69) 0.10
150 1.8601(29.22) 0.9826(3.90) 0.10 0.9861(2.78) 0.10
300 1.1458(2.16) 1.0229(3.11) 0.10 1.0219(2.68) 0.10

200

50 0.8304(8.13) 0.6727(4.18) 0.10 0.6686(3.90) 0.10
100 0.9486(14.28) 0.7485(4.24) 0.10 0.7439(3.74) 0.10
150 1.1196(21.36) 0.7878(3.13) 0.10 0.7823(2.96) 0.10
300 1.0941(20.72) 0.8352(3.06) 0.10 0.8268(2.35) 0.10

500

50 0.6042(3.16) 0.4904(3.50) 0.10 0.4886(3.01) 0.10
100 0.7708(2.91) 0.5407(2.96) 0.10 0.5381(2.85) 0.10
150 0.9308(2.97) 0.5795(2.75) 0.10 0.5779(2.61) 0.10
300 1.3403(3.26) 0.6186(2.22) 0.10 0.6147(2.08) 0.10

Table B.21: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 5 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.3

100

50 0.9350(7.80) 0.8843(4.18) 0.10 0.8935(3.94) 0.10
100 0.9888(3.71) 0.9802(4.53) 0.10 0.9835(3.47) 0.10
150 1.0266(2.78) 1.0203(3.62) 0.10 1.0222(2.91) 0.10
300 1.0671(5.54) 1.0569(2.59) 0.09 1.0581(2.34) 0.09

200

50 0.7887(3.92) 0.7079(4.50) 0.10 0.7096(4.03) 0.10
100 0.8632(3.29) 0.7823(3.58) 0.10 0.7816(3.16) 0.10
150 0.9086(2.72) 0.8351(3.54) 0.09 0.8322(3.11) 0.10
300 0.9545(1.98) 0.8814(3.18) 0.07 0.8735(2.50) 0.07

500

50 0.6627(3.29) 0.5355(4.25) 0.10 0.5373(3.64) 0.10
100 0.7451(2.77) 0.5898(2.60) 0.10 0.5928(2.56) 0.09
150 0.7896(2.23) 0.6284(2.71) 0.10 0.6316(2.74) 0.10
300 0.8361(1.97) 0.6737(2.47) 0.07 0.6733(2.29) 0.08
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Table B.22: The Average (standard error in %) of Spectral Norm-based IRSE for Sce-
nario 5 (continued)

n p stNCM1 DAC1 Sig. DAC2 Sig.

ρ = 0.8

100

50 1.1946(4.58) 1.0905(3.03) 0.10 1.0966(2.78) 0.10
100 1.2773(4.40) 1.1765(2.42) 0.10 1.1826(2.22) 0.10
150 1.3022(4.41) 1.2054(1.76) 0.06 1.2109(1.63) 0.06
300 1.3283(10.18) 1.2244(1.33) 0.04 1.2304(1.08) 0.03

200

50 1.2322(1.28) 1.0299(4.85) 0.10 1.0174(2.95) 0.10
100 1.2963(0.96) 1.1032(2.41) 0.04 1.0953(2.18) 0.04
150 1.3130(0.57) 1.1431(3.23) 0.03 1.1322(1.56) 0.03
300 1.3186(0.47) 1.1670(1.22) 0.02 1.1583(1.27) 0.01

500

50 1.1894(1.46) 0.9990(2.01) 0.08 0.9921(2.04) 0.08
100 1.2546(1.04) 1.0667(1.60) 0.03 1.0555(1.70) 0.03
150 1.2763(0.69) 1.1048(1.37) 0.03 1.0917(1.35) 0.02
300 1.2839(0.62) 1.1243(1.18) 0.01 1.1089(1.06) 0.01

186



Appendix C

Proofs and Results of Chapter 5

C.1 Technical Details for AR(p), MA(q) and
ARMA(p, q) Processes

To prove Theorem 5.1, we need the following lemma

Lemma C.1. If multivariate variable x ∼ Np(µ,Σ), then the entropy of x, de-
noted as h(x), is

h(x) = 1

2
log ((2πe)p |Σ|) .

Proof. By the definition of continuous entropy, we have

h(x) = −
∫
Rp

f(x) log (f(x)) dx,

=
p

2
log(2π) + 1

2
log(|Σ|) + 1

2
E
[
(x− µ)TΣ−1 (x− µ)

]
,

=
1

2
log ((2πe)p |Σ|) ,

this completes the proof.

Let Σm,Σ11;ms,Σ22;ms represent the auto-covariance matrices of vectors x(m+1),
x(m+1−s) and x(s) respectively, Σ12;ms is the covariance matrix between x(m+1−s)

and x(s), i.e.,

Σm =



γ0 γ1 γ2 · · · γm

γ1 γ0 γ1 · · · γm−1

γ2 γ1 γ0 · · · γm−2

... ... ... ... ...

γm γm−1 γm−2 · · · γ0


,Σ11;ms =



γ0 γ1 · · · γm−s

γ1 γ0 · · · γm−s−1

γ2 γ1 · · · γm−s−2

... ... ... ...

γm−s γm−s−1 · · · γ0


,
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and

Σ22;ms =



γ0 γ1 · · · γs−1

γ1 γ0 · · · γs−2

γ2 γ1 · · · γs−3

... ... ... ...

γs−1 γs−2 · · · γ0


,Σ12;ms =



γm−s+1 γm−s+2 · · · γm

γm−s γm−s+1 · · · γm−1

γm−s−1 γm−s · · · γm−2

... ... ... ...

γ1 γ2 · · · γs


.

For simplicity, we have

Σm =

Σ11;ms Σ12;ms

Σ21;ms Σ22;ms

 ,
we also notice that Rm = γ−1

0 Σm, R11;ms = γ−1
0 Σ11;ms, R12;ms = γ−1

0 Σ12;ms,
R22;s = γ−1

0 Σ22;ms. Based on these facts, we now prove Proposition 5.1.

Proof of Proposition 5.1. Since εi is the Gaussian white noise, the distribution
of x(m+1), x(m+1−s) and x(s) are multivariate Gaussian with covariance matrices
Σm,Σ11;ms,Σ22;ms respectively. By Lemma C.1, we can obtain the following re-
sults: h

(
x(m+1)

)
= 2−1 log

(
(2πe)m+1 |Σm|

)
, h
(
x(s)
)
= 2−1 log ((2πe)s |Σ22;ms|)

and h
(
x(m+1−s)

)
= 2−1 log

(
(2πe)m+1−s |Σ11;ms|

)
. The relative entropy can be

expressed as

Is
(
x(m+1)

)
= RlEns =

∫
Rm+1

f
(
x(m+1)

)
log
(

f
(
x(m+1)

)
g (x(m+1−s)) g (x(s))

)
dx(m+1),

=
1

2
log
(
|R11;ms| |R22;ms|

|Rm|

)
, 1 ≤ s ≤ m, m ≥ 1.

By the Yule-Walker equations,

ρ1

ρ2

ρ3
...

ρp


=



1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ2 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3

... ... ... ... ...

ρp−1 ρp−2 ρp−3 · · · 1





ϕ1

ϕ2

ϕ3

...

ϕp


,

the autocorrelation ρi, i = 1, 2, . . . ,∞ are totally determined by coefficient ϕk, k =

1, . . . , p. Hence, Is(x(m+1)) is a function of ϕk, k = 1, . . . , p. As {xi} and {εi}
are independent, the autocorrelation function of {xi} is independent of σ which
implies Is(x(m+1)) is independent of σ as well which completes the proof.
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Proof of Proposition 5.3. First, when m = p, we prove that

I1
(
x(m+1)

)
= −1

2
log
(
1−

p∑
k=1

ϕkρk

)
.

Next, we prove it still holds when m > p.

Note that the Is(x(m+1)) relates to the determinant of block matrix, we in-
troduce a general result of determinant of block matrix below. For any block
matrix

M =

A B

C D

 ,
if matrix A is invertible, we have |M | = |D − CA−1B| |A|. Applying this result
to relative entropy when s = 1, we have

I1
(
x(m+1)

)
=

1

2
log
(
|R11;p1| |R22;p1|

|Rp|

)
,

=
1

2
log
(

1

1−R21;p1R
−1
11;p1R12;p1

)
,

where R21;p1 = (ρp, . . . , ρ1), R12;p1 = RT
21;p1 and

R11;p1 = Ψp =



1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ2 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3

... ... ... ... ...

ρp−1 ρp−2 ρp−3 · · · 1


.

Let ρp = (ρ1, . . . , ρp)
T = PRT

21;p1, where P is permutation matrix, i.e.,

P =



0 · · · 0 1

0 · · · 1 0

... ... ... ...

1 · · · 0 0


,

then R21:p1R
−1
11:p1R12:p1 = ρT

p (PR
−1
11:p1P )ρp. The term (PR−1

11:p1P ) means that
we apply the same permutation P twice to R−1

11:p1, so (PR−1
11:p1P ) = R−1

11:p1.
Denote Φp = (ϕ1, . . . , ϕp)

T , then the matrix form of Yule-Walker equation is
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ρp = R11:p1Φp, finally we have

R21:p1R
−1
11:p1R12:p1 = ρT

pR
−1
11:p1ρp = ρT

pΦp =

p∑
k=1

ρkϕk,

which completes the proof when m = p.

When m > p, denote ρm−p = (ρp+1, . . . , ρm)
T , then R21:m1 = (ρm, . . . , ρ1) =

P (ρT
p ,ρ

T
m−p)

T . Similarly, we still have

R21:m1R
−1
11:m1R12:m1 = (ρT

p ,ρ
T
m−p)PR

−1
11:m1P (ρ

T
p ,ρ

T
m−p)

T

= (ρT
p ,ρ

T
m−p)R

−1
11:m1(ρ

T
p ,ρ

T
m−p)

T
.

Now R11:m1 is m×m size symmetric matrix. We divide it into four blocks, i.e.,

R11:m1 =

Ψp Ψ12

Ψ21 Ψ22

 ,
where

Ψ12 = ΨT
21 =



ρp · · · ρm−1

ρp−1 · · · ρm−2

... ... ...

ρ1 · · · ρm−p


,Ψ22 =



1 ρ1 · · · ρm−p−1

ρ1 1 · · · ρm−p−2

... ... ... ...

ρm−p−1 ρm−p−2 · · · 1


.

Since AR(p) is stationary, thenR11:m1 is invertible. Let S =
(
Ψ22 −Ψ21Ψ

−1
p Ψ12

)−1,
the inverse of R11:m1 is

R−1
11:m1 =

Ψ−1
p +Ψ−1

p Ψ12SΨ21Ψ
−1
p −Ψ−1

p Ψ12S

−SΨ21Ψ
−1
p S

 ,
therefore

R21:m1R
−1
11:m1R12:m1 = (ρT

p ,ρ
T
m−p)R

−1
11:m1(ρ

T
p ,ρ

T
m−p)

T
,

= ρT
pΨ

−1
p ρp + ρT

pΨ
−1
p Ψ12SΨ21Ψ

−1
p ρp−

ρT
m−pSΨ21Ψ

−1
p ρp − ρT

pΨ
−1
p Ψ12Sρm−p + ρT

m−pSρm−p,

= ρT
pΨ

−1
p ρp +

(
ρT
pΨ

−1
p Ψ12 − ρT

m−p

)
S
(
Ψ21Ψ

−1
p ρp − ρm−p

)
,

= ρT
pΨ

−1
p ρp +

(
ΦT

pΨ12 − ρT
m−p

)
S (Ψ21Φp − ρm−p) .

By Yule-Walker equation, it is easy to verify that ΦT
pΨ12−ρT

m−p = 0. Combining
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the previous result ρT
pΨ

−1
p ρp =

∑p
k=1 ρkϕk, we finally complete the whole proof.

Proof of Proposition 5.4. Since {xi} is stationary moving average process and
εi,i = 1, 2, . . . are i.i.d., the auto-covariance function of {xi} can be expressed as

γτ =

σ2
∑q−|τ |

j=0 θjθj+|τ | if |τ | ≤ q.

0 if |τ | > q.

ρτ =


∑q−|τ |

j=0 θjθj+|τ |/
∑q

j=0 θ
2
j if |τ | ≤ q.

0 if |τ | > q.

where θ0 = 1. By the similar discussion in Proposition 5.1’s proof, equation (5.10)
immediately holds. Furthermore, using the block matrix inversion manipulation
in the proof of Proposition 5.3, one can verify that when s = 1 and m ≥ q1

Is(x(m+1)) = −2−1 log(1−R(1)
12;q11

(R
(1)
11;q11

)−1R
(1)
21;q11

). This completes the proof.

Proof of Proposition 5.5. Using the characteristic polynomial, the ARMA(p, q)

process can be expressed as

ϕ(L)xi = θ(L)εi, or xi = ψ(L)εi,

where ψ(L) = ϕ(L)/θ(L). If ARMA(p, q) process is stationary, by Wold repre-
sentation (Wold, 1948), we have ψ(L) =

∑∞
j=0 ψjL

j. Then γ0 = σ2
∑∞

j=0 ψj <∞.
It is easy to verify that

ρτ − ϕ1ρτ−1 − · · · − ϕpρτ−p = 0, for τ ≥ max(p, q + 1),

ρτ − ϕ1ρτ−1 − · · · − ϕpρτ−p = cτ/
∑∞

j=0
ψj, for 0 ≤ τ < max(p, q + 1),

where cτ = θτψ0 + θτ+1ψ1 + · · · + θqψq−τ . By the similar discussion in Proposi-
tion 5.1’s proof, Proposition 5.5 immediately holds which completes the proof.

C.2 Lag Order Selection and Proof

Figure C.1 shows the results of the first time series in Case 2.

Proof of Theorem 5.1. The proof is based on the proofs of Vieu (1995) and Shao
(1997). First, we construct a new equation σ2

λ(m) = σ̂2
e(m)[1+λn(m, ĥm)], where

λn(m, ĥm) = v(m, ĥm) log(n)/n. We can regard λn(m, ĥm) as a penalty part
in σ2

λ(m), when λn(m, ĥm)→ 0, minimizing BIC(m) is equivalent to minimizing
σ2
λ(m) based on the fact that log(1+x) ≈ x as x→ 0. This proof skill is frequently

adopted in discussion of BIC or AIC consistency, see, for example, Shibata (1981,
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Figure C.1: Relative Entropy against Lag Order for Different Bandwidths

p. 46), Vieu (1995, p. 314) and Shao (1997, p. 232). Therefore, the sketch of our
proof can be summarized into the following two steps: (1) We need to discuss
the consistency of lag order selected via σ̂2

e(m); (2) We extend the result to the
penalty version σ2

λ(m) with controlling λn(m, ĥm) → 0 in an appropriate rate.
This proof is very similar to that in lag order selection (Vieu, 1995) except the
definitions of σ̂2

e(m) and λn(m, ĥm). Next, we introduce the conditions used in
our proof.

(C11) The time series {Xi}i∈N is α-mixing, the mixing coefficient α(n) satisfies:
∃ s > 0, ∃ 0 < t < 1, ∀ n ≥ 1, α(n) ≤ stn.

(C12) For each 1 ≤ m < M , there exists the nonlinear autoregression functions
such that

xi+m = F
(

X(m)
i

)
+ εi,m,

where X(m)
i is independent of εi,m and εi,m, i = 1, . . . , n are noise with mean

zero.

(C13) The unknown function F has second-order continuous derivation.

(C14) ∀ q ≥ 1, ∃ Mq such that for any i,E|Xi|q ≤Mq <∞.

(C15) Given m, for some 0 < γm < ∞ and some 0 < ηm < 1/(4 + m), the
bandwidth satisfies:

h∗ ∈ Hn,m =
[
γ−1
m n−ηm−1/(4+m), γmn

ηm−1/(4+m)
]
.
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(C16) λn(m, ĥm) is of order log(n)/(n(h∗)m).
(C17) m could be arbitrary large but has an upper bound M .

Conditions (C11)–(C16) are quoted from Vieu (1995, pp. 310–311) with appro-
priate adjustments for our circumstance. Condition (C17) controls the upper
bound M to coordinate the proof of RlEn in Appendix C.3. Given lag order
m, 1 ≤ m ≤M and the underlying lag order m0, we define the distance between
F(X(m0)

i ) and F̂(X(m)
i , h∗) by

σ2
0(m,h∗) =

1

N −max(m,m0)

max(m,m0)∑
i=1

[
F
(

X(m0)
i

)
− F̂

(
X(m)

i , h∗

)]2
.

Furthermore, let σ2
0(m) = infh∗∈Hn σ

2
0(m,h∗), we have

Lemma C.2. Given Conditions (C11)–(C15), Assumption 1 and Assumption 2,
the nonlinear autoregression process (5.14) has underlying lag order m0 and m0 ∈
{1, . . . ,M}, then we have

(a) σ2
0(m0)→ 0, a.e.,

(b) For 1 ≤ m < m0, there exists real positive constant cm > 0 such that

σ̂2
e(m)− σ̂2

e(m0) ≥ cm, a.s.,

(c) For m0 < m ≤M , ∃ c0 > 0 s.t. σ̂2
e(m0)− c0 ≥ 0, a.s. and

σ̂2
e(m)− c0

σ̂2
e(m0)− c0

→ +∞, a.s.

Proof of Lemma C.2. This proof employs the same techniques used in Lemma 1,
Lemma 2 and Theorem 3 in Vieu (1995). It can be regarded as a special case
of Vieu (1995) except the upper bound M . Give m, n = N − m, the average
square predict error of nonlinear autoregression is defined as

σ2(m,h∗) =
1

n

n∑
i=1

[
F
(

X(m)
i

)
− F̂

(
X(m)

i , h∗

)]2
.

Under Assumptions 1 and 2, we can rewrite the average square predict error (e.g.,
Li & Racine, 2007, pp. 83–85) as

σ2(m,h∗) = α1m
1

nhm∗
+ α2mmh

4
∗ + o

(
1

nhm∗
+ h4∗

)
, a.s., (C.1)

where α1m and α2m are constant. We can easily obtain the optimal bandwidth if
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we minimize the first two leading terms in equation (C.1), denoted as

ĥm =

(
4α2m

α1m

n

)− 1
4+m

.

Finally, we get

σ2(m) = inf
h∗∈Hn,m

σ2(m,h∗) = α3mn
− 4

4+m + o
(
n− 4

4+m

)
, a.s., (C.2)

where α3m is a constant. Especially, when m = m0, then σ2(m) = σ2
0(m0),

immediately, σ2
0(m0)→ 0 holds almost surely. This completes the proof of (a).

Proof of (b). For given m, 1 ≤ m < m0, let ĥm,cv = arg minh∗∈Hn,m
σ̂2
e(m,h∗),

the bandwidth selected by least square cross-validation is still of order n−1/(4+m)

as ĥm (e.g., Vieu, 1991; Hall et al., 2004), so ĥm,cv ∈ Hn,m, we have

σ2(m, ĥm,cv)

inf
h∗∈Hn,m

σ2(m,h∗)
→ 1, a.s. (C.3)

In the proof of this property, Vieu (1991) and Vieu (1995) employed the following
statement for nonlinear autoregression:

σ̂2
e(m,h∗)− σ2(m,h∗) =

1

n

n∑
i=1

ε2i,m + o
(
σ2(m,h∗)

)
, a.s., (C.4)

where the operation o(·) is uniform over h∗ ∈ Hn,m. Therefore, by equation (C.2)
and equation (C.3), ∀ m, 1 ≤ m < m0, we have σ2(m, ĥm,cv) = o(n−4/(4+m))

almost surely. Then, minimizing equation (C.4), we obtain for any 1 ≤ m < m0

σ̂2
e(m) =

1

n

n∑
i=1

ε2i,m + o(1), a.s. (C.5)

Let δm = Var(εi,m) and cm = δm − δm0 , by equation (C.5), we have σ̂2
e(m) −

σ̂2
e(m0) → cm, a.s., and cm > 0 because from (C15) and Assumption 2, we

know cm ≥ Var [E(xi+m|X(m0)
i ) − E(xi+m|X(m)

i )], because 1 ≤ m < m0, so
Var [E(xi+m|X(m0)

i )− E(xi+m|X(m)
i )] > 0 which completes the proof (b).

Proof of (c). For m0 < m ≤ M , replacing h∗ in equation (C.4) with ĥm,cv,
we obtain

σ̂2
e(m)− σ2(m, ĥm,cv) =

1

n

n∑
i=1

ε2i,m + o
(
n−4/(4+m)

)
, a.s.
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We also note that (C.3) implies

σ2(m, ĥm,cv) = inf
h∗∈Hn,m

σ2(m,h∗) + o
(
n−4/(4+m)

)
, a.s.,

therefore

σ̂2
e(m) = σ2

0(m) +
1

n

n∑
i=1

ε2i,m + o
(
n−4/(4+m)

)
, a.s. (C.6)

Like the discussion in Vieu (1995), by Bernstein’s inequality for α-mixing, for
example, see the Theorem 3.1 in Roussas & Ioannides (1988), we have

1

N −m0

N−m0∑
i=1

ε2i,m0
− Var(εi,m0) = o

(
n−4/(4+m0)

)
, a.s. (C.7)

Combining (C.6) and (C.7), we get

|σ̂2
e(m)− c0|

|σ̂2
e(m0)− c0|

=
σ2
0(m)

σ2
0(m0)

+ o

(
σ2
0(m)

σ2
0(m0)

)
, a.s.,

where c0 = Var(εi,m0). By the fact (C.2), we have σ2
0(m)/σ2

0(m0) → ∞ almost
surely. Immediately, by (C.6), we can conclude σ̂2

e(m0) − c0 ≥ 0, a.s., because
σ2
0(m) is positive. This completes the proof.

Let m̄ = arg min σ̂2
e(m), based on Lemma C.2, we immediately have

σ2
0(m̄)/σ2

0(m0)→ 1, a.s.

Moreover, we add the penalty part to σ̂2
e(m), i.e., σ2

λ(m) = σ̂2
e(m)[1+λn(m, ĥm)],

where λn(m, ĥm) = v(m, ĥm) log(n)/n. Based on Lemma 5.1, Condition (C16)
makes sure that the penalty part is not arbitrary large compared with 0. Based
on Lemma C.2, previous discussion and Condition (C17), we have

max
m=1,...,M

|σ2
λ(m)− σ̂2

e(m)|
σ2
0(m)

=
log(n)
n

4
4+m

≤ log(n)

n

4

4+O(
√

log(n))
= o(1), a.s. (C.8)

Let m̂ = arg min σ2
λ(m), we have σ2

0(m̂λ)/σ
2
0(m0)→ 1 almost surely. Because the

previous results are almost surely convergence, so

P (m̂ = m0)→ 1,

holds as well which completes the whole proof.

Note: Vieu (1995) claimed M = O(log(n)), however, our result shows that
M is at least of order O(

√
log(n)), see equation (C.8). Furthermore, if one want

to control M to tend to infinity not as fast as O(
√

log(n)), the order of M could
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be O(log(log(n))). However, in order to keep M consistent in the proof of RlEn
theory, we sacrifice the relaxation of m to infinity discussed above.

C.3 Consistency of RlEn

Proof of Lemma 5.2. Under Assumptions 1 and 2, we can obtain the uniform
rates of convergence for multivariate kernel density estimator (e.g., Li & Racine,
2007, pp. 30–32). For z ∈ Im, it follows that

sup
z∈Im
|ĝ(z)− g(z)| = Op

(
(logn)1/2

n1/2hm/2
+mh2

)
, (C.9)

and
sup
z∈Im

E
{
[ĝ(z)− g(z)]2

}
= O

(
n−1h−m +mh4

)
. (C.10)

Using (C.9) and (C.10), we have

1

n

n∑
i=1

∣∣∣ĝ (x(m)
i

)
− g

(
x(m)
i

)∣∣∣3
≤ sup

x(m)
i ∈Im

∣∣∣ĝ (x(m)
i

)
− g

(
x(m)
i

)∣∣∣{ 1

n

n∑
i=1

[
ĝ
(

x(m)
i

)
− g

(
x(m)
i

)]2}
,

= Op

(
(logn)1/2

n3/2h3m/2
+m2h6

)
.

(C.11)

Then by (C.11) and the inequality
∣∣log(1 + x)− x+ 1

2
x2
∣∣ ≤ |x|3, obviously we

have ∣∣∣∣Înm(ĝ, g)− Ŵ1S(m) +
1

2
Ŵ2S(m)

∣∣∣∣
≤ 1

n

∑
i∈Sn(m)

∣∣∣∣∣∣
ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
∣∣∣∣∣∣
3,

= Op

(
(logn)1/2

n3/2h3m/2
+m2h6

)
,

(C.12)

where

Ŵ1S(m) =
1

n

∑
i∈Sn(m)

 ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
 ,

and

Ŵ2S(m) =
∑

i∈Sn(m)

 ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
2

.
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Note that the definitions of Ŵ1(m) and Ŵ2(m) include the summation of n ob-
servations. The difference is[

Ŵ1S(m)− 1

2
Ŵ2S(m)

]
−
[
Ŵ1(m)− 1

2
Ŵ2(m)

]
= Op

[
1

n

n∑
i=1

P (i 6∈ Sn(m))

]
, (C.13)

= Op

 1
n

n∑
i=1

E

∣∣∣∣∣∣
ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
∣∣∣∣∣∣
3
 , (C.14)

= Op

(
(logn)1/2

n3/2h3m/2
+m2h6

)
. (C.15)

Step (C.13) to step (C.14) is based on the fact that

P (i 6∈ Sn(m)) = P
(
ĝ
(

x(m)
i

)
≤ 0
)
,

≤ P
[∣∣∣ĝ (x(m)

i

)
− g

(
x(m)
i

)∣∣∣ > g
(

x(m)
i

)]
,

≤ E

∣∣∣∣∣∣
ĝ
(

x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
∣∣∣∣∣∣
3

.

Combining equations (C.12) and (C.15), we complete the proof of this lemma.

Proof of Lemma 5.3. Firstly, we give a similar result for univariate kernel, then
we extend this result to multivariate kernel. For any x, y ∈ I, denote γn1(x, y) =∫ 1

0
[KJ

h (x
∗, y)−

∫ 1

0
KJ

h (x
∗, y∗)g1(y

∗)dy∗]dx∗/g1(x). The numerator of γn1(x, y) in-
cludes two terms. The first term can be expanded as∫ 1

0

KJ
h (x∗ − y) dx∗

=

∫ h

0

KJ
h (x∗ − y) dx∗ +

∫ 1

1−h

KJ
h (x∗ − y) dx∗ +

∫ 1−h

h

Kh (x
∗ − y) dx∗,

(C.16)
when n → ∞, then h → 0 such that y/h → ∞ and (1 − y)/h → ∞ for any
y ∈ (0, 1), see APPENDIX A in Hong & White (2005). Using K(·) having
bounded support [−1, 1] and change of variable, when n is sufficient large, the
first and second terms in equation (C.16) are zero, and the third term is 1. When
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n is sufficiently large, the term∫ 1

0

∫ 1

0

KJ
h (x

∗, y∗)g1(y
∗)dy∗dx∗

=

∫ 1

0

g1(y
∗)

∫ 1

0

KJ
h (x

∗, y∗)dx∗dy∗

=

∫ 1

0

g1(y
∗) · 1dy∗ = 1,

(C.17)

as well. Therefore, when n is sufficiently large, γn1(x, y) = 0 with probability 1.
Recalling that K(m)

h (·) is multiplicative kernel, we can easily extend this result to
multivariate case. It follows that for sufficiently large n,

P
[
γnm

(
x(m)
i , x(m)

j

)
= 0
]
= 1,

this completes the proof.

Proof of Lemma 5.4. Let

ϕnm(z1, z2) = hmDnm(z1, z2) = hm
[
A2

nm(z1, z2) + A2
nm(z2, z1)

]
,

then we have ϕ̂n(m) = hmD̂n(m) and

ϕnm0 =

∫
Im

∫
Im
ϕnm (z1, z2) g(z1)g(z2) dz1 dz2

= 2hmEA2
nm (z1, z2) .

We note that g(z) is bounded away from zero by Assumption 2, then it follows
that

Eϕ2
nm ≤ h2mC

∫
Im

∫
Im
A4

nm (z1, z2) dz1 dz2 = O(1),

because EA2
nm (z1, z2) = O(h−m), Jensen’s inequality and Cauchy-Schwarz in-

equality. Using the same way, one can also verify that Eϕ2
nm1(x

(m)
i )−ϕ2

nm0 = O(1),
so hmDnm(z1, z2) satisfies the conditions in Lemma C.3, immediately have the re-
sult (5.28).

Proof of Lemma 5.5. Let

ϕnm(z1, z2, z3) = hmH̃2nm(z1, z2, z3),
= hm [Anm(z1, z2)Anm(z1, z3) + Anm(z2, z3)Anm(z2, z1)

+Anm(z3, z1)Anm(z3, z2)] ,

198



then we have

ϕ̂n(m) = hm
(
n

3

)−1 n∑
k=3

k−1∑
j=2

j−1∑
i=1

H̃2nm

(
x(m)
k , x(m)

i , x(m)
j

)
= hmH̃2n(m),

and ϕnm2(z1, z2) = hmH2nm(z1, z2) based on the fact
∫
Im Anm(z1, z2)g(z2) dz2 = 0.

Furthermore, we can easily verify that Eϕ2
nm(x

(m)
i , x(m)

j , x(m)
k ) = O(1), then by

Lemma C.4, we immediately obtain equation (5.29) which completes the proof.

Proof of Lemma 5.6. Firstly, Ŵ22(m) can be expressed as

Ŵ22(m) =
1

n

n∑
i=1

B2
nm

(
x(m)
i

)
,

= EB2
nm

(
x(m)
1

)
+

1

n

n∑
i=1

[
B2

nm

(
x(m)
i

)
− EB2

nm

(
x(m)
1

)]
.

By Lemma C.5, we have EB4
nm(x

(m)
i ) = O(h8). When i ≥ m, x(m)

i is independent
of x(m)

1 and m is bounded by M , by Chebyshev’s inequality, we immediately have
Ŵ22(m) = EB2

nm(x
(m)
1 ) +Op(n

−1/2h4), this completes the proof.

Proof of Lemma 5.7. Define a new symmetric function

C̃nm(z1, z2) = Anm(z1, z2)Bnm(z1) + Anm(z2, z1)Bnm(z2),

then

Ŵ23(m) = 2
1

n

n∑
i=1

 ĝ
(

x(m)
i

)
− ḡ

(
x(m)
i

)
g
(

x(m)
i

)
 ḡ

(
x(m)
i

)
− g

(
x(m)
i

)
g
(

x(m)
i

)
 ,

=

(
n

2

)−1 n∑
j=2

j−1∑
i=1

C̃nm

(
x(m)
i , x(m)

j

)
.

Let ϕnm(z1, z2) = C̃nm (z1, z2), then ϕnm0 = 0 and

ϕnm1(z) =
∫
Im
ϕnm(z, z2)g(z2) dz2 =

∫
Im
ϕnm(z2, z)g(z2) dz2,

=

∫
Im
Anm(z2, z)Bnm(z2)g(z2) dz2.

As discussion in Lemma 5.4, one can verify that E[ϕ2
nm(x

(m)
i , x(m)

j )] = O(c2n),
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where cn = h2−m/2. By Lemma C.3, we have

Ŵ23(m) = ϕ̂n(m) =
2

n

n∑
i=1

ϕnm1

(
x(m)
i

)
+Op(n

−1mh2−m/2),

= 2Ĉn(m) +Op(n
−1mh2−m/2),

which completes the proof.

Proof of Lemma 5.8. Let κ1 = 2
∫ 1

0

∫ ρ

−1
k2ρ(u) du dρ−2κ−1, then Ea2n(z1m, z2m) =

κh−1+κ1+O(h), by equation (C.26) and H0, we immediately obtain the desired
result.

Proof of Lemma 5.9. By equation (C.27), [B̂n(m + 1) − B̂n(m) − b̂n] can be ex-
pressed as[

B̂n(m+ 1)− B̂n(m)− b̂n
]

= EBnm(y1)bn(z1m) +
1

n

n∑
i=1

[
Bnm

(
x(m)
i

)
bn(xi+m)− EBnm(y1)bn(z1m)

]
,

According to Cauchy-Schwarz inequality, E[Bnm

(
x(m)
i

)
bn(xi+m)]

2

= O(h8), so
the second term

n−1

n∑
i=1

[
Bnm

(
x(m)
i

)
bn(xi+m)− EBnm(y1)bn(z1m)

]
= Op(n

−1/2h4),

by Markov inequality and Chebyshev inequality. Furthermore, by equation (C.27)
and Lemma C.5, after simple calculations, we have

EB2
n(m+1)(z1)− EB2

n(m)(y1)− Eb2n(z1m)

= 2EBnm(y1)bn(z1m) + 2EB2
nm(y1)bn(z1m) + EBnm(y1)b

2
n(z1m) +O(h8),

= 2EBnm(y1)bn(z1m) +O(h6),

which immediately completes the proof.

Proof of Lemma 5.10. Let

K̄J
h (z1m) =

∫ 1

0

KJ
h (z1m, z)g1(z) dz,

K̄(m)
h (y1) =

∫
Im

K(m)
h (y1, y)g(y) dy,

K̄(m+1)
h (z1) =

∫
Im+1

K(m+1)
h (z1, z)f(z) dz,

and ψ1(z1m) = K̄J
h (z1m)/g1(xi+m), ψ1(z1m, xi+m) = KJ

h (z1m, xi+m)/g1(xi+m),
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ψm(y1) = K̄(m)
h (y1)/g(y1),ψm(y1, x(m)

i ) = K(m)
h (y1, x(m)

i )/g(y1). Given the defini-
tion of multivariate kernel and H0, we obtain

an (z1m, xi+m) = ψ1(z1m, xi+m)− ψ1(z1m),

Anm

(
y1, x(m)

i

)
= ψm

(
y1, x(m)

i

)
− ψm (y1) ,

An(m+1)

(
z1, x(m+1)

i

)
= ψm

(
y1, x(m)

i

)
ψ1(z1m, xi+m)− ψm (y1)ψ1(z1m).

Using equation (C.27) and f(z1) = g(y1)g1(z1m), we can separately write c̆(xi+m),
C̆m(x(m)

i ) and C̆m+1(x(m+1)
i ) as

c̆(xi+m) =

∫ 1

0

ψ1 (z1m, xi+m) bn(z1m)g1(z1m) dz1m

−
∫ 1

0

ψ1 (z1m) bn(z1m)g1(z1m) dz1m,

= c̆1(xi+m)− c̆2,

C̆m

(
x(m)
i

)
=

∫
y1∈Im

ψm

(
y1, x(m)

i

)
Bnm(y1)g(y1) dy1

−
∫

y1∈Im
ψm (y1)Bnm(y1)g(y1) dy1,

= C̆1

(
x(m)
i

)
− C̆2,

C̆m+1

(
x(m+1)
i

)
= C̆1

(
x(m)
i

)
c̆1(xi+m)− C̆2c̆2

+ C̆1

(
x(m)
i

)∫ 1

0

KJ
h (z1m, xi+m) dz1m

− C̆2

∫ 1

0

K̄J
h (z1m) dz1m

+ c̆1(xi+m)

∫
y1∈Im

K(m)
h

(
y1, x(m)

i

)
dy1

− c̆2
∫

y1∈Im
K̄(m)

h (y1) dy1,
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then we have

C̆m+1

(
x(m+1)
i

)
− C̆m

(
x(m)
i

)
− c̆(xi+m)

= C̆1

(
x(m)
i

)
c̆1(xi+m)− C̆2c̆2

+ C̆1

(
x(m)
i

)[∫ 1

0

KJ
h (z1m, xi+m) dz1m − 1

]
− C̆2

[∫ 1

0

K̄J
h (z1m) dz1m − 1

]
+ c̆1(xi+m)

[∫
y1∈Im

K(m)
h

(
y1, x(m)

i

)
dy1 − 1

]
− c̆2

[∫
y1∈Im

K̄(m)
h (y1) dy1 − 1

]
= C̆1

(
x(m)
i

)
c̆1(xi+m)− C̆2c̆2 +

4∑
s=1

δs.

Firstly, for terms δs, s = 1, 2, 3, 4, we prove δ1 = 0, δ2 = 0, a.e., for univariate
kernel when n is sufficient large, then we extend this result to multivariate ker-
nel. For any y ∈ I, by equations (C.16) and (C.17) in Lemma 5.3, we have∫ 1

0
KJ

h (x, y) dx = 1 and
∫ 1

0
K̄J

h (x)dx = 1 almost surely. Therefore, when n

is sufficiently large, δ1 = 0, δ2 = 0 almost everywhere. Recalling that K(m)
h (·)

is multiplicative kernel, we can easily extend this result to multivariate case.
It follows that for sufficiently large n,

∑4
s=1 δs = 0 almost surely. Therefore,

Ĉn(m + 1) − Ĉn(m) − ĉn = n−1
∑n

i=1 C̆1(x(m)
i )c̆1(xi+m) − C̆2c̆2. We also no-

tice that E[C̆1(x(m)
i )c̆1(xi+m)] = C̆2c̆2 and E[C̆1(x(m)

i )c̆1(xi+m)]
2
= O(h8) because

of Lemma C.5. Hence, by Chebyshev inequality, Ĉn(m + 1) − Ĉn(m) − ĉn =

Op(n
−1/2h4), this completes the proof.

Proof of Lemma 5.11. By Lemma C.6 and Lemma C.7, we have E[T1n0(m+1)] =

E[T1n0(m)] = O(mn−1h2), E[T2n0(m)] = c2(τ
m−1)+O(mn−1h), E[T2n0(m+1)] =

c1(τ
m+1 − 1) + O(mn−1h) where c2 = [(2n −m)(m − 1)]/[(n −m)(n −m + 1)]

and c1 = [(2n − m − 1)m]/[(n − m − 1)(n − m)]. Using the similar change
of variable in Lemma C.6 and Lemma C.7, one can verify that E[T 2

1n0(m)] =

O(m2n−2h−m), E[T 2
1n0(m + 1)] = O(m2n−2h−m−1), E[T 2

2n0(m)] = O(m2n−2h−m)

and E[T 2
2n0(m+1)] = O(m2n−2h−m−1). Hence, by Chebyshev inequality, we have

T1n0(m) = O(mn−1h2) +Op(mn
−1h−

m
2 ),

T2n0(m) = c2(τ
m − 1) +O(mn−1h) +Op(mn

−1h−
m
2 ),

T1n0(m+ 1) = O(mn−1h2) +Op(mn
−1h−

m+1
2 ),

T2n0(m+ 1) = c1(τ
m+1 − 1) +O(mn−1h) +Op(mn

−1h−
m+1

2 ),
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which immediately completes the proof comparing with order n−1/2h−(m+1)/2.

Proof of Theorem 5.5. Following the THEOREMs A.6 – A.9 in Hong & White
(2005), one can extend their theory to multivariate U-statistics with bounded
m. Hong & White (2005) discussed the pair variables Zjt = (Xt, Xt−j)

T and
j = o(n). THEOREM A.6 constructs a new 2j-dependent process to show the
dependent part of U-statistics is negligible, then they employed a martingale
difference sequence in THEOREM A.7 so that the U-statistics can be projected on
it. THEOREM A.7 implies that one can apply central limit theorem to martingale
difference sequence according to Brown (1971)’s theorem if two conditions in
THEOREM A.9 are satisfied. Finally, by Slusky’s theorem, Brown’s theorem and
THEOREMs A.6 – A.9, the central limit theorem of U-statistics is completed.
Analogue to Hong & White (2005)’s idea but more tedious than that, for bounded
m, (5.32) holds as well.

C.4 Lemmas for The Second and Third Order
U-statistics

Lemma C.3. Let Z(m)
i = (Xi, . . . , Xi+m−1)

T , m < M and {Xt} is i.i.d. with
CDF G1(·). Consider a second-order U-statistics

ϕ̂n(m) =

(
n

2

)−1 n∑
j=2

j−1∑
i=1

ϕnm

(
Z(m)
i ,Z(m)

j

)
,

where ϕnm (·, ·) is a kernel function such that ϕnm (z1, z2) = ϕnm (z2, z1). Let

ϕnm0 =

∫
Im

∫
Im
ϕnm (z1, z2) dGm(z1) dGm(z2),

and ϕnm1 (z) =
∫
Im ϕnm (z, z1) dGm(z1), where Gm(z) = G1(x1)G1(x2) · · ·G1(xm)

and z = (x1, . . . , xm)
T . Suppose Eϕ2

nm(Z
(m)
i ,Z(m)

j )− ϕ2
nm0 = O(c2n) holds, then we

have

ϕ̂n(m) = ϕnm0 +
2

n

n∑
i=1

[
ϕnm1

(
Z(m)
i

)
− ϕnm0

]
+Op(mn

−1cn).

If in addition Eϕ2
nm1(Z

(m)
i )− ϕ2

nm0 ≤ C and cn = O(n1/2), then ϕ̂n(m) = ϕnm0 +

Op(m
1/2n−1/2).

Proof of Lemma C.3. Lemma C.3 is the version of LEMMA B.1 in Hong & White
(2005). For m-consecutive variables, we still use the same notations as Hong &
White (2005)’s. Denote ϕ̃nm(z1, z2) = ϕnm(z1, z2) − ϕnm1(z1) − ϕnm1(z2) + ϕnm0,
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then ∀ z1, z2 ∈ Im, we have∫
Im
ϕ̃nm (z1, z2) dGm(z2) =

∫
Im
ϕ̃nm (z1, z2) dGm(z1) = 0. (C.18)

Using ϕ̃nm(z1, z2), we can reshape ϕ̂n(m) after simple computations,

ϕ̂n(m) = ϕnm0 +
2

n

n∑
i=1

[
ϕnm1

(
Z(m)
i

)
− ϕnm0

]
+

(
n

2

)−1 n∑
j=2

j−1∑
i=1

ϕ̃nm

(
Z(m)
i ,Z(m)

j

)
,

= ϕnm0 +
2

n

n∑
i=1

[
ϕnm1

(
Z(m)
i

)
− ϕnm0

]
+ ϕ̃n(m).

(C.19)

Note that, if j − i ≥ m, then Z(m)
j and Z(m)

i have no overlap variable. By this
fact, we divide ϕ̃n(m) into two parts,

ϕ̃n(m) =

(
n

2

)−1 n∑
j=1+m

j−m∑
i=1

ϕ̃nm

(
Z(m)
i ,Z(m)

j

)
+

(
n

2

)−1 n∑
j=2

j−1∑
i=1∨(j−m+1)

ϕ̃nm

(
Z(m)
i ,Z(m)

j

)
,

= ϕ̃n1(m) + ϕ̃n2(m).

The double summation of ϕ̃n1(m) includes (n−m)(n−m+1)/2 terms and there
are (2n−m)(m− 1)/2 summation terms in ϕ̃n2(m). One can easily verify

Eϕ̃2
nm

(
Z(m)
i ,Z(m)

j

)
= Eϕ2

nm

(
Z(m)
i ,Z(m)

j

)
− ϕ2

nm0 = O(c2n).

Hence, using Cauchy-Schwarz inequality, we have

E
∣∣∣ϕ̃n2(m)

∣∣∣ = E

∣∣∣∣∣∣
(
n

2

)−1 n∑
j=2

j−1∑
i=1∨(j−m+1)

ϕ̃nm

(
Z(m)
i ,Z(m)

j

)∣∣∣∣∣∣ ,
= O(mn−1)E

∣∣∣ϕ̃nm

(
Z(m)
i ,Z(m)

j

)∣∣∣ ,
≤ O(mn−1)

√
Eϕ̃2

nm

(
Z(m)
i ,Z(m)

j

)
,

= O(mn−1cn).

By Markov’s inequality, we have ϕ̃n2(m) = Op(mn
−1cn). We also notice that the
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Z(m)
i and Z(m)

j in the first term ϕ̃n1(m) are independent, hence we have

Eϕ̃2
n1(m) =

(
n

2

)−2 n∑
j=1+m

j−m∑
i=1

n∑
t=1+m

t−m∑
s=1

E
[
ϕ̃nm

(
Z(m)
i ,Z(m)

j

)
ϕ̃nm

(
Z(m)
s ,Z(m)

t

)]
× 1 (i, j ∈ Sij) ,

(C.20)

where Sij = [s−m+ 1, s+m− 1] ∪ [t−m+ 1, t+m− 1]. If at least one of
i, j /∈ Sij, by equation (C.18), E[ϕ̃nm(Z(m)

i ,Z(m)
j )ϕ̃nm(Z(m)

s ,Z(m)
t )] = 0. The num-

ber of pair (s, t), t − s ≥ m is of order O(n2), for each given (s, t), if Z(m)
i

has at least one overlap variable with Z(m)
s or Z(m)

t , and Z(m)
j has at least one

overlap variable with Z(m)
s or Z(m)

t as well, then the expectation is nonzero.
The indices of i, j have at most O(m) and O(m) choices respectively given
m < M . So the number of four summation terms in equation (C.20) is of order
O(n2m2) = O(n2)O(m)O(m), hence Eϕ̃2

n1(m) = O(m2n−2c2n) by Cauchy-Schwarz
inequality and Eϕ̃2

nm(Z
(m)
i ,Z(m)

j ) = O(c2n). It follows that ϕ̃n1(m) = Op(mn
−1cn)

by Chebyshev’s inequality, and finally ϕ̃n(m) = Op(mn
−1cn).

Next, using a similar way, we discuss the order of the second term in equa-
tion (C.19). Note that ϕnm1(Z(m)

i )−ϕnm0 is an m-dependence process with mean
0 and

E
{[
ϕnm1

(
Z(m)
i

)
− ϕnm0

] [
ϕnm1

(
Z(m)
j

)
− ϕnm0

]}
= 0,

if j − i ≥ m. The number of nonzero terms in E{
∑n

i=1[ϕnm1(Z(m)
i )− ϕnm0]}

2
is

of order O(nm). By these facts, E[ϕnm1(Z(m)
i )− ϕnm0]

2
≤ C and Chebyshev’s in-

equality, we have 2n−1
∑n

i=1[ϕnm1(Z(m)
i )−ϕnm0] = Op(m

1/2n−1/2). This completes
the proof.

Lemma C.4. Let Z(m)
i = (Xi, . . . , Xi+m−1)

T , m < M and {Xt} is i.i.d. with
CDF G1(·). Consider a third-order U-statistics

ϕ̂n(m) =

(
n

3

)−1 n∑
k=3

k−1∑
j=2

j−1∑
i=1

ϕnm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)
, (C.21)

where ϕnm (·, ·, ·) is a kernel function in its argument and ∀ z1 ∈ Im∫
Im

∫
Im
ϕnm (z1, z2, z3) dGm(z2) dGm(z3) = 0, (C.22)

holds, where Gm(z) = G1(x1)G1(x2) · · ·G1(xm) and z = (x1, . . . , xm)
T . Let

ϕnm2(z1, z2) =
∫
Im
ϕnm (z1, z2, z3) dGm(z3).
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Suppose Eϕ2
nm(Z

(m)
i ,Z(m)

j ,Z(m)
k ) = O(c2n), then we have

ϕ̂n(m) = 3

(
n

2

)−1 n∑
j=2

j−1∑
i=1

ϕnm2

(
Z(m)
i ,Z(m)

j

)
+Op(m

3/2n−3/2cn).

Proof of Lemma C.4. Lemma C.4 is the version of LEMMA B.2 in Hong & White
(2005). For m-consecutive variables, we still use the same notations as Hong &
White (2005)’s. As in Lemma C.3, we construct a new symmetric third-order
U -statistics

ϕ̃nm(z1, z2, z3) = ϕnm(z1, z2, z3)− ϕnm2(z1, z2)− ϕnm2(z2, z3)− ϕnm2(z3, z1),

and it is easy to verify∫
Im
ϕ̃nm (z1, z2, z3) dGm(z3) = 0, ∀ z1, z2 ∈ Im, (C.23)

given equation (C.22). We can rewrite equation (C.21) using ϕ̃nm(·, ·, ·) as

ϕ̂n(m) = 3

(
n

2

)−1 n∑
j=2

j−1∑
i=1

ϕnm2

(
Z(m)
i ,Z(m)

j

)
+

(
n

3

)−1 n∑
k=3

k−1∑
j=2

j−1∑
i=1

ϕ̃nm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)
,

= 3

(
n

2

)−1

ϕ̂n2(m) +

(
n

3

)−1

ϕ̃n(m).

Let

ϕ̃n1(m) =
n∑

k=1+2m

k−m∑
j=1+m

j−m∑
i=1

ϕ̃nm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)
, (C.24)

then Z(m)
i ,Z(m)

j ,Z(m)
k in (C.24) are mutually independent and (C.24) includes(

n−2m+2
3

)
terms. Then ϕ̃n2(m) = ϕ̃n(m) − ϕ̃n1(m) includes

(
n
3

)
−
(
n−2m+2

3

)
=

O(mn2) terms by m < M . Using Cauchy-Schwarz inequality, we can verify
Eϕ̃2

nm(Z
(m)
i ,Z(m)

j ,Z(m)
k ) = O(c2n) as well. Hence, we have

E
∣∣∣ϕ̃n2(m)

∣∣∣ = O(mn2)E
∣∣∣ϕ̃nm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)∣∣∣ ,
≤ O(mn2)

√
Eϕ̃2

nm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)
,

(by Cauchy-Schwarz inequality ),

= O(mn2cn).
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For ϕ̃n1(m), we have

Eϕ̃2
n1(m) =

n∑
k=1+2m

k−m∑
j=1+m

j−m∑
i=1

n∑
r=1+2m

r−m∑
t=1+m

t−m∑
s=1

E
[
ϕ̃nm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)
ϕ̃nm

(
Z(m)
s ,Z(m)

t ,Z(m)
r

)]
× 1 (i, j, k ∈ Sijk) ,

(C.25)

where

Sijk = [s−m+ 1, s+m− 1] ∪ [t−m+ 1, t+m− 1] ∪ [r − 1] .

If at least one of i, j, k /∈ Sijk, then by equation (C.23),

E
[
ϕ̃nm

(
Z(m)
i ,Z(m)

j ,Z(m)
k

)
ϕ̃nm

(
Z(m)
s ,Z(m)

t ,Z(m)
r

)]
= 0.

The number of triplet (s, t, r), t − s ≥ m and r − t ≥ m is of order O(n3),
for each given triplet (s, t, r), if each of Z(m)

i , Z(m)
j , Z(m)

k has at least one over-
lap variable with Z(m)

s , Z(m)
t or Z(m)

r , then the expectation is nonzero. The in-
dices of i, j, k have at most O(m), O(m) and O(m) choices respectively given
m < M . So the number of six summation terms in equation (C.25) is of order
O(n3m3) = O(n3)O(m)O(m)O(m), hence Eϕ̃2

n1(m) = O(m3n3c2n) by Cauchy-
Schwarz inequality and Eϕ̃2

nm(Z
(m)
i ,Z(m)

j ,Z(m)
k ) = O(c2n). Finally, it follows that(

n
3

)−1
ϕ̃n(m) = Op(m

3/2n−3/2cn) by Chebyshev’s inequality and Markov’s inequal-
ity. This completes the proof.

Lemma C.5. Given Assumptions 1 and 2, ∀ z1, z2 ∈ Im, if z1, z2 are indepen-
dent, then EA2

nm(z1, z2) is of order O(h−m). Furthermore, for 1 ≤ m ≤ M ,
maxm supz1∈Im Bnm(z1) = O(h2).

Proof of Lemma C.5. To prove this lemma, we investigate the univariate case,
i.e.,

an(x1, x2) =

[
KJ

h (x1, x2)−
∫ 1

0

KJ
h (x1, x)g1(x)dx

]
/g1(x1).

For simplicity, we denote K̄J
h (x1) =

∫ 1

0
KJ

h (x1, x)g1(x)dx, then

an(x1, x2) =
[
KJ

h (x1, x2)− K̄J
h (x1)

]
/g1(x1),∫ 1

0

an(x1, x2)g1(x2) dx2 = 0,
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and

Ean(x1, x2) =
∫ 1

0

∫ 1

0

an(x1, x2)g1(x1)g1(x2) dx1 dx2,

=

∫ 1

0

∫ 1

0

[
KJ

h (x1, x2)− K̄J
h (x1)

]
g1(x2) dx1 dx2 = 0.

We have

a2n(x1, x2) =

[
KJ

h (x1, x2)− K̄J
h (x1)

g1(x1)

]2
,

=

[
KJ

h (x1, x2)
]2

g21(x1)
+

[
K̄J

h (x1)
]2

g21(x1)
− 2

KJ
h (x1, x2)× K̄J

h (x1)

g21(x1)
,

= ψ1(x1, x2) + ψ2(x1, x2)− 2ψ3(x1, x2).

Next, we will discuss each ψi(·, ·), i = 1, 2, 3.

Eψ1(x1, x2) =

∫ 1

0

∫ h

0

h−2k2(x1/h)

(
x1 − x2

h

)
g1(x2)

g1(x1)
dx1 dx2

+

∫ 1

0

∫ 1−h

h

h−2K2
h

(
x1 − x2

h

)
g1(x2)

g1(x1)
dx1 dx2

+

∫ 1

0

∫ 1

1−h

h−2k2([1−x1]/h)

(
x1 − x2

h

)
g1(x2)

g1(x1)
dx1 dx2,

= ψ11 + ψ12 + ψ13.

By change of variable, we have

ψ11 =

∫ 1

0

∫ h

0

h−2k2(x1/h)

(
x1 − x2

h

)
g1(x2)

g1(x1)
dx1 dx2,

=

∫ h

0

∫ x1/h

−1

h−1k2(x1/h)
(u)

g1(x1 − uh)
g1(x1)

du dx1,

=

∫ h

0

∫ x1/h

−1

h−1k2(x1/h)
(u)

[
1− uhg

′
1(x1)

g1(x1)

]
du dx1,

=

∫ 1

0

∫ ρ

−1

k2ρ(u) du dρ− h
∫ 1

0

∫ ρ

−1

uk2ρ(u)
g′1(ρh)

g1(ρh)
du dρ+O(h2).

Using the same method, we have

ψ12 =

∫ 1

0

∫ 1−h

h

h−2K2
h

(
x1 − x2

h

)
g1(x2)

g1(x1)
dx1 dx2,

=

∫ 1−h

h

∫ 1

−1

h−1K2
h (u)

[
1− uhg

′
1(x1)

g1(x1)
+

1

2
u2h2

g′′1(x1)

g1(x1)

]
du dx1,

= (h−1 − 2)

∫ 1

−1

K2(u) du+O(h),

208



and

ψ13 =

∫ 1

0

∫ 1

−ρ

k2ρ(u) du dρ− h
∫ 1

0

∫ 1

−ρ

uk2ρ(u)
g′1(ρh)

g1(ρh)
du dρ+O(h2).

Hence,

Eψ1(x1, x2) = (h−1 − 2)

∫ 1

−1

K2(u) + 2

∫ 1

0

∫ ρ

−1

k2ρ(u) du dρ+O(h),

Eψ2(x1, x2) =

∫ 1

0

[
K̄J

h (x1)
]2
/g1(x1) dx1,

and

Eψ3(x1, x2) =

∫ 1

0

∫ 1

0

KJ
h (x1, x2)× K̄J

h (x1)

g21(x1)
g1(x1)g1(x2) dx1 dx2,

=

∫ 1

0

[
K̄J

h (x1)
]2
/g1(x1) dx1.

Now we need to expand K̄J
h (x1), when 0 ≤ x1 ≤ h,

K̄J
h (x1) = g1(x1)

∫ x1/h

−1

k(x1/h) (u) du− hg′1(x1)
∫ x1/h

−1

uk(x1/h) (u) du

+
1

2
h2g′′1(x1)

∫ x1/h

−1

u2k(x1/h) (u) du,

= g1(x1) +O(h2),

because ∫ x1/h

−1

k(x1/h) (u) du = 1,∫ x1/h

−1

uk(x1/h) (u) du = 0.

Note that for Jackknife kernel kρ(u),∫ ρ

−1

kρ(u) du =

∫ ρ

−1

(1 + β)
K(u)

ω0(ρ)
du−

∫ ρ

−α

β

α

K(u/α)

ω0(ρ/α)
du,

for h ≤ x1 ≤ 1−h and 1−h < x1 ≤ 1, we also have K̄J
h (x1) = g1(x1)+O(h2), so[

K̄J
h (x1)

]2
/g1(x1) = g1(x1)+O(h

2), hence Eψ2(x1, x2) = Eψ3(x1, x2) = 1+O(h2).
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Finally,
Ea2n(x1, x2) = Eψ1(x1, x2) + Eψ2(x1, x2)− 2Eψ3(x1, x2)

= (h−1 − 2)

∫ 1

−1

K2(u)du

+ 2

∫ 1

0

∫ ρ

−1

k2ρ(u) du dρ− 1 +O(h),

= O(h−1).

Now, we have obtained the result of univariate case. For multivariate case, let
z1 = (z10, . . . , z1(m−2), z1(m−1))

T = (yT
1 , z1(m−1))

T and

z2 = (z20, . . . , z1(m−2), z1(m−1))
T =

(
yT
2 , z2(m−1)

)T
,

by the Assumptions 1 and 2, the definition of multivariate kernel and H0, we can
prove that

EA2
nm(z1, z2) = EA2

n(m−1)(y1, y2)Ea2n(z1(m−1), z2(m−1))

+ EA2
n(m−1)(y1, y2)E

[
K̄J

h (z1(m−1))

g1(z1(m−1))

]2
+ Ea2n(z1(m−1), z2(m−1))E

[
K̄(m−1)

h (y1)

g1(y1)

]2
,

= EA2
n(m−1)(y1, y2)O(h

−1)

+ EA2
n(m−1)(y1, y2)E

[
bn(z1(m−1)) + 1

]2
+ Ea2n(z1(m−1), z2(m−1))E

[
Bn(m−1)(y1) + 1

]2
,

(C.26)

where K̄J
h (z1) =

∫ 1

0
KJ

h (z1, z2)g1(z2) dz2 and

K̄(m−1)
h (y1) =

∫
Im−1

K(m−1)
h (y1, y)g(y) dy.

Iteratively, we can obtain EA2
nm(z1, z2) = O(h−m) by equations (C.26) and (C.27).

For the last part, we have bn(x1) = K̄J
h (x1)/g1(x1)− 1 = O(h2), given H0, we

can also verify that

Bnm(z1) = Bn(m−1)(y1)bn(z1(m−1)) + Bn(m−1)(y1) + bn(z1(m−1)). (C.27)

This immediately completes the proof.

Lemma C.6. Given H0 and 1 ≤ m < M , we have

EH1nm(z1, z2) =

0 if z1, z2 are independent,

O(h2) otherwise.
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Proof of Lemma C.6. When z1 and z2 have no overlap variable, i.e., z1 and z2 are
independent, by the definition (5.21), (5.22) and H0, we have EH1nm(z1, z2) = 0.
Next, we will prove the order of EH1nm(z1, z2) is O(h2) if z1 and z2 have one or
more overlap variables. Note that Ĥ1n(m) is a U-statistics, z1 6= z2, then z1 and
z2 have at most m− 1 overlap variables. By the fact Ãnm(z1, z2)−Anm(z1, z2) =
γnm(z1, z2) and Lemma 5.3, we only need to proof EAnm(z1, z2) = O(h2). First,
we prove the order is O(h2) if z1 and z2 sharing m − 1 overlap variables, then
extend the result to the case whence z1 and z2 share only 1 overlap variable. Let
z1 = (z1, . . . , zm) and z2 = (z2, . . . , zm+1), from Lemma C.5, we know ∀ z1 ∈ Im,
K̄

(m)
h = g(z1) +O(h2). Hence,

EAnm(z1, z2)

=

∫ 1

0

· · ·
∫ 1

0

K
(m)
h (z1, z2)− K̄(m)

h (z1)
g(z1)

g(z1)g1(zm+1) dz1 · · · dzm+1,

=

∫ 1

0

· · ·
∫ 1

0

[
K

(m)
h (z1, z2)− g(z1) +O(h2)

]
g1(zm+1) dz1 · · · dzm+1,

=

∫ 1

0

· · ·
∫ 1

0

K
(m)
h (z1, z2)g1(zm+1) dz1 · · · dzm+1 − 1 +O(h2).

(C.28)

We also notice that∫ 1

0

K
(m)
h (z1, z2)g1(zm+1) dzm1

= KJ
h (z1, z2)× · · · ×KJ

h (zm−1, zm)

∫ 1

0

KJ
h (zm, zm+1)g1(zm+1) dzm1,

= KJ
h (z1, z2)× · · · ×KJ

h (zm−1, zm)
[
g1(zm) +O(h2)

]
,

(C.29)

iteratively substituting (C.29) into integration (C.28), we finally obtain

EAnm(z1, z2) = O(h2).

Using the similar method, one can easily prove EAnm(z1, z2) = O(h2) if z1, z2
have only one overlap variable. This completes the proof.

Lemma C.7. Given H0 and 2 ≤ m < M , we have

EH2nm(z1, z2) =

0 if z1, z2 are independent,

τm − 1 +O(h) otherwise,

where τ =
∫ 1

−1

∫ 1

−1
K(u)K(u+ v) du dv.

Proof of Lemma C.7. Let z0 = (z01, . . . , z0m)
T , z1 = (z1, . . . , zm)

T and

211



z2 = (z2, . . . , zm+1)
T , then we have

H2nm(z1, z2) =
∫
Im

Anm(z0, z1)Anm(z0, z2)g(z0) dz0,

=

∫
Im

K
(m)
h (z0, z1)K(m)

h (z0, z2)
g(z0)

dz0

−
∫
Im

[
K

(m)
h (z0, z1) +K

(m)
h (z0, z2)

]
dz0 + 1 +O(h2),

therefore

EH2nm(z1, z2)

=

∫ 1

0

∫
Im

∫
Im

K
(m)
h (z0, z1)K(m)

h (z0, z2)
g(z0)

g(z1)g1(zm+1) dz0 dz1 dzm+1 − 1 +O(h2).

By change of variable and the first-order Taylor expansion, the first term can be
expressed as τm+O(h). One can also obtain the same result for z1 = (z1, . . . , zm)

T

and z2 = (zm, . . . , z2m−1)
T using the same discussion. This completes the proof.

C.5 Relationship of CoEn and ApEn

We define the multivariate uniform kernel as

K(x) = 2−m1 (‖x‖∞ ≤ 1) , (C.30)

where m is the length of x and ‖x‖∞ is the maximum norm. In fact, (C.30) is
one type of multiplicative kernel. If we let bandwidth for each entry of x be
constant h, then the scaled multivariate kernel can be expressed as

Kh(x) = (2h)−m
1 (‖x‖∞ ≤ h) .

We still use the notions x(m)
i and x(m+1)

i as defined in Section 5.2, therefore the
kernel density estimators of both x(m)

i and x(m+1)
i can be written as

f̂
(

x(m+1)
i

)
=

1

n

n∑
j=1

Kh

(
x(m+1)
j − x(m+1)

i

)
,

= (2h)−(m+1) 1

n

n∑
j=1

1

(∥∥∥x(m+1)
j − x(m+1)

i

∥∥∥
∞
≤ h

)
,

= (2h)−(m+1)C
(m+1)
i (h), i = 1, . . . , n,
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ĝ
(

x(m)
i

)
=

1

n

n∑
j=1

Kh

(
x(m)
j − x(m)

i

)
,

= (2h)−m 1

n

n∑
j=1

1

(∥∥∥x(m)
j − x(m)

i

∥∥∥
∞
≤ h

)
,

= (2h)−mC
(m)
i (h), i = 1, . . . , n.

Hence, conditional entropy can be expressed as

CoEn = − 1

n

n∑
i=1

log

 f̂
(

x(m+1)
i

)
ĝ
(

x(m)
i

)
 ,

= − 1

n

n∑
i=1

log
(

C
(m+1)
i (h)

(2h)C
(m)
i (h)

)
,

= ApEn + log(2h).

Especially, for Gaussian kernel, the relationship of CoEn and ApEn is

CoEn = ApEn + log
(√

2h
)
.

C.6 Seasonal ARIMA Estimation

We divide the real sports time series into three groups according to the change
points 16 and 22, i.e., Group 1 indices: 1–15; Group 2 indices: 16–21; Group 3
indices: 22–52. The average of each group denotes as x1, x2, x3 respectively. Next
we will estimate Processes 1, 2 and 3 based on x1, x2, x3 step by step.

Degree of Integration Using the Augmented Dickey-Fuller test (Dickey &
Fuller, 1979), we found the degree of integration is 2 for x1, x2, x3.

The Period of Season We check the graph of sample autocorrelation function,
see Figure C.2. In the dataset cleaning step, the dataset is filtered by lower-
pass ButterWorth, the cut-off frequency is 20 Hz. Figure C.2 also implies the
periodical auto-correlation of x1, x2, x3. Discrete Faster Fourier Transformation is
used here to convert time series analysis from time domain to frequency domain.
For example, Figure C.3(a) demonstrates the result of Discrete Faster Fourier
Transformation of x1. Clearly, the largest amplitude is 0.01603, the corresponding
frequency is 13.4 Hz, which mean the period is around 75. The seasonality of
Process 1 sets to be 75. Using the same way, the seasonalities of Processes 2 and
3 are 67 and 81 respectively. Furthermore, we specify the seasonality order of AR
as 1 for simplicity.
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(a) ACF of x1 (b) ACF of x2 (c) ACF of x3

Figure C.2: Sample Autocorrelation Function

(a) x1 (b) x2 (c) x3

Figure C.3: Single-Sided Amplitude Spectrum Analysis

The Choice of Order Based on the previous analysis, we suggest the following
process1 for Group 1:

ϕ(L)Φ(L)(1− L)D(1− Ls)Dsxt = c+ θ(L)εt,

where ϕ(L) = 1−ϕ1L−· · ·−ϕpL
p and θ(L) = 1+θ1L+· · ·+θqLq represent the AR

and MA operator polynomials. Φ(L) = 1−Φp1L
p1 −Φp2L

p2 −· · ·−ΦpsL
ps is sea-

sonal auto-regressive operator polynomials. (1− Ls)Ds is the so-called Seasonal
Difference factor. For Group 1, based on our previous analysis, we let D = 2,
s = 75 and D75 = 1, the unknown parameters are ϕ1, . . . , ϕp, θ1, . . . , θq,Φ75. We
can not guarantee each unknown parameter significant at this moment. There-
fore, for given pair (p, q), we apply the backward model selection method to
choose the significant parameters.

Specifically, we let p and q changes from 0 to 4 respectively, for each combi-
nation of p and q, the BIC of backward model selection in each step is computed.
Then, choose the combination of p and q which has a minimum BIC.

Finally, we summarize the basic steps of SARIMA process as follows:

Step 1: Using the Augmented Dickey-Fuller test to determine D;

Step 2: Using Discrete Faster Fourier Transformation to choose the seasonal
period;

Step 3: For user-specified order of seasonality of AR and MA polynomial,
1https://uk.mathworks.com/help/econ/seasonal-arima-sarima-model.html

214

https://uk.mathworks.com/help/econ/seasonal-arima-sarima-model.html


Chapter C. Proofs and Results of Chapter 5 215

choose the lag numbers;

Step 4: For given (p, q), using backward model selection to choose the modal
and compute the corresponding BIC;

Step 5: Let p and q change from 0 to p.max and q.max respectively, repeat
step 4, and choose the combination which has the minimum BIC.

For Group 2 and 3, we use the same procedures to choose the order and
parameters of SARIMA process.

Note, the process is not optimal because (1) the range of p, q is from 1 to
4, one can extend this range to 10, 20, etc, but the complexity will increase as
well; (2) seasonal autoregressive order is 1, there maybe exist more periods, see
Figure C.3(a), if we go further, the complexity and computation consumption
will increase significantly.

We also apply the same estimation procedure to x2 and x3, the order p, q are
(2, 2) and (2, 1) respectively. We generate 15 time series from Process 1, 6 time
series from Process 2 and 31 time series from Process 3. Even in this case, our
RlEn method can detect the change points 16 and 22.
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(a) RlEn=1.886 (b) RlEn=1.578

(c) RlEn=1.393 (d) RlEn=1.359

(e) RlEn=1.055 (f) RlEn=0.831

(g) RlEn=0.548 (h) RlEn=0.103

Figure C.4: Normalized Daily New Cases for eight Countries



Bibliography

Acharya U, Rajendra, Kannathal N, Ong Wai Sing, Luk Yi Ping & TjiLeng Chua
(2004). “Heart Rate Analysis in Normal Subjects of Various Age Groups”.
BioMedical Engineering OnLine, 24. doi: 10.1186/1475- 925X- 3- 24 (see
p. 4).

Acharya U., Rajendra, Oliver Faust, N. Kannathal, TjiLeng Chua & Swamy
Laxminarayan (2005). “Non-Linear Analysis of EEG Signals at Various Sleep
Stages”. Computer Methods and Programs in Biomedicine 1, 37–45. doi: 10.
1016/j.cmpb.2005.06.011 (see p. 4).

Agre, J. C. & A. A. Rodriquez (1991). “Intermittent Isometric Activity: Its Effect
on Muscle Fatigue in Postpolio Subjects”. Archives of Physical Medicine and
Rehabilitation 12, 971–975 (see p. 99).

Ahmed, Amr & Eric P. Xing (2009). “Recovering Time-Varying Networks of
Dependencies in Social and Biological Studies”. Proceedings of the National
Academy of Sciences of the United States of America 29, 11878–11883. doi:
10.1073/pnas.0901910106 (see p. 1).

Ahmed, Mosabber Uddin & Danilo P. Mandic (2012). “Multivariate Multiscale
Entropy Analysis”. IEEE Signal Processing Letters 2, 91–94. doi: 10.1109/
LSP.2011.2180713 (see p. 23).

Amini, Arash A. & Martin J. Wainwright (2008). “High-Dimensional Analysis
of Semidefinite Relaxations for Sparse Principal Components”. In: 2008 IEEE
International Symposium on Information Theory. Toronto, ON, Canada: IEEE,
2454–2458. doi: 10.1109/ISIT.2008.4595432 (see p. 3).

An, B., J. Guo & Y. Liu (2014). “Hypothesis Testing for Band Size Detection
of High-Dimensional Banded Precision Matrices”. Biometrika 2, 477–483. doi:
10.1093/biomet/asu006 (see p. 42).

Bai, Zhidong & Jack W. Silverstein (2010). Spectral Analysis of Large Dimen-
sional Random Matrices. Springer Series in Statistics. New York, NY: Springer
New York. 560 pp. doi: 10.1007/978-1-4419-0661-8 (see p. 49).

Benjamini, Yoav, Abba M. Krieger & Daniel Yekutieli (2006). “Adaptive Linear
Step-up Procedures That Control the False Discovery Rate”. Biometrika 3,
491–507. doi: 10.1093/biomet/93.3.491 (see p. 27).

217

https://doi.org/10.1186/1475-925X-3-24
https://doi.org/10.1016/j.cmpb.2005.06.011
https://doi.org/10.1016/j.cmpb.2005.06.011
https://doi.org/10.1073/pnas.0901910106
https://doi.org/10.1109/LSP.2011.2180713
https://doi.org/10.1109/LSP.2011.2180713
https://doi.org/10.1109/ISIT.2008.4595432
https://doi.org/10.1093/biomet/asu006
https://doi.org/10.1007/978-1-4419-0661-8
https://doi.org/10.1093/biomet/93.3.491


Bickel, Peter J. & Elizaveta Levina (2008a). “Covariance Regularization by
Thresholding”. Annals of Statistics 6, 2577–2604. doi: 10.1214/08-AOS600
(see pp. 17, 37, 47, 48).

– (2008b). “Regularized Estimation of Large Covariance Matrices”. Annals of
Statistics 1, 199–227. doi: 10.1214/009053607000000758 (see pp. 3, 62, 63).

Bien, Jacob & Robert J. Tibshirani (2011). “Sparse Estimation of a Covariance
Matrix”. Biometrika 4, 807–820. doi: 10.1093/biomet/asr054 (see p. 38).

Biscay, Rolando, Luis M. Rodríguez & Eloísa Díaz-Frances (1997). “Cross-
Validation of Covariance Structures Using the Frobenius Matrix Distance as a
Discrepancy Function”. Journal of Statistical Computation and Simulation 3,
195–215. doi: 10.1080/00949659708811831 (see p. 20).

Braun, J. V., R. K. Braun & H. -G. Muller (2000). “Multiple Changepoint Fit-
ting via Quasilikelihood, with Application to DNA Sequence Segmentation”.
Biometrika 2, 301–314. doi: 10.1093/biomet/87.2.301 (see p. 111).

Brown, B. M. (1971). “Martingale Central Limit Theorems”. Annals of Mathe-
matical Statistics 1, 59–66. doi: 10.1214/aoms/1177693494 (see p. 203).

Buja, Andreas, Trevor Hastie & Robert Tibshirani (1989). “Linear Smoothers
and Additive Models”. Annals of Statistics 2, 453–510. doi: 10.1214/aos/
1176347115 (see p. 12).

Burioka, Naoto, Masanori Miyata, Germaine Cornélissen, Franz Halberg, Takao
Takeshima, Daniel T. Kaplan, Hisashi Suyama, Masanori Endo, Yoshihiro Mae-
gaki, Takashi Nomura, Yutaka Tomita, Kenji Nakashima & Eiji Shimizu (2005).
“Approximate Entropy in the Electroencephalogram during Wake and Sleep”.
Clinical EEG Neuroscience 1, 21–24. doi: 10.1177/155005940503600106 (see
pp. 4, 129).

Butterworth, S. (1930). “On the Theory of Filter Amplifiers”. Experimental Wire-
less and the Wireless Engineer , 536–541 (see p. 126).

Cai, Tony & Weidong Liu (2011). “Adaptive Thresholding for Sparse Covariance
Matrix Estimation”. Journal of the American Statistical Association 494, 672–
684. doi: 10.1198/jasa.2011.tm10560 (see pp. 17, 33, 38, 48).

Cao-abad, R. & W. González-Manteiga (1993). “Bootstrap Methods in Regression
Smoothing”. Journal of Nonparametric Statistics 4, 379–388. doi: 10.1080/
10485259308832566 (see p. 18).

Chacón, José E., Tarn Duong & Tarn Duong (2018). Multivariate Kernel Smooth-
ing and Its Applications. Chapman and Hall/CRC. isbn: 978-0-429-48557-2.
doi: 10.1201/9780429485572 (see p. 18).

Chamberlain, Gary & Michael Rothschild (1983). “Arbitrage, Factor Structure,
and Mean-Variance Analysis on Large Asset Markets”. Econometrica 5, 1281–
1304. doi: 10.2307/1912275 (see p. 2).

218

https://doi.org/10.1214/08-AOS600
https://doi.org/10.1214/009053607000000758
https://doi.org/10.1093/biomet/asr054
https://doi.org/10.1080/00949659708811831
https://doi.org/10.1093/biomet/87.2.301
https://doi.org/10.1214/aoms/1177693494
https://doi.org/10.1214/aos/1176347115
https://doi.org/10.1214/aos/1176347115
https://doi.org/10.1177/155005940503600106
https://doi.org/10.1198/jasa.2011.tm10560
https://doi.org/10.1080/10485259308832566
https://doi.org/10.1080/10485259308832566
https://doi.org/10.1201/9780429485572
https://doi.org/10.2307/1912275


Chaudhuri, Sanjay, Mathias Drton & Thomas S. Richardson (2007). “Estimation
of a Covariance Matrix with Zeros”. Biometrika 1, 199–216. doi: 10.1093/
biomet/asm007 (see p. 38).

Chen, Jia, Degui Li & Oliver B. Linton (2018). “A New Semiparametric Esti-
mation Approach of Large Dynamic Covariance Matrices with Multiple Con-
ditioning Variables”. Social Science Research Network Journal. doi: 10.2139/
ssrn.3210726 (see p. 1).

Chen, Kun, Kung-Sik Chan & Nils Chr. Stenseth (2012). “Reduced Rank Stochas-
tic Regression with a Sparse Singular Value Decomposition: Reduced Rank
Stochastic Regression”. Journal of the Royal Statistical Society: Series B 2,
203–221. doi: 10.1111/j.1467-9868.2011.01002.x (see p. 1).

Chen, Weiting, Jun Zhuang, Wangxin Yu & Zhizhong Wang (2009). “Measur-
ing Complexity Using FuzzyEn, ApEn, and SampEn”. Medical Engineering &
Physics 1, 61–68. doi: 10.1016/j.medengphy.2008.04.005 (see pp. 21, 23,
26).

Chen, Xiaohui, Mengyu Xu & Wei Biao Wu (2013). “Covariance and Precision
Matrix Estimation for High-Dimensional Time Series”. Annals of Statistics 6,
2994–3021. doi: 10.1214/13-AOS1182 (see p. 1).

Chen, Ziqi & Chenlei Leng (2015). “Local Linear Estimation of Covariance Ma-
trices via Cholesky Decomposition”. Statistica Sinica. doi: 10.5705/ss.2013.
129 (see p. 21).

– (2016). “Dynamic Covariance Models”. Journal of the American Statistical As-
sociation 515, 1196–1207. doi: 10.1080/01621459.2015.1077712 (see pp. 1–
3, 6, 7, 16–19, 21, 32–35, 37, 38, 41, 47, 49, 54, 55, 61, 62, 64, 77, 79, 135).

Cheng, Ming-Yen, Jianqing Fan & J. S. Marron (1997). “On Automatic Bound-
ary Corrections”. Annals of Statistics 4, 1691–1708. doi: 10 . 1214 / aos /
1031594737 (see p. 14).

Chon, Ki H., Christopher G. Scully & Sheng Lu (2009). “Approximate Entropy
for All Signals”. IEEE Engineering in Medicine and Biology Magazine 6, 18–
23. doi: 10.1109/MEMB.2009.934629 (see p. 25).

Clark, R. M. (1977). “Non-Parametric Estimation of a Smooth Regression Func-
tion”. Journal of the Royal Statistical Society. Series B 1, 107–113. doi: 10.
1111/j.2517-6161.1977.tb01611.x (see p. 18).

Clauset, Aaron, M. E. J. Newman & Cristopher Moore (2004). “Finding Com-
munity Structure in Very Large Networks”. Physical Review E 6, 1–6. doi:
10.1103/PhysRevE.70.066111 (see p. 97).

Cormen, Thomas H., ed. (2009). Introduction to Algorithms. 3rd ed. Cambridge,
Mass: MIT Press. 1292 pp. isbn: 978-0-262-03384-8 (see pp. 9, 65).

Costa, M., C. -K. Peng, Ary L. Goldberger & Jeffrey M. Hausdorff (2003). “Mul-
tiscale Entropy Analysis of Human Gait Dynamics”. Physica A: Statistical Me-

219

https://doi.org/10.1093/biomet/asm007
https://doi.org/10.1093/biomet/asm007
https://doi.org/10.2139/ssrn.3210726
https://doi.org/10.2139/ssrn.3210726
https://doi.org/10.1111/j.1467-9868.2011.01002.x
https://doi.org/10.1016/j.medengphy.2008.04.005
https://doi.org/10.1214/13-AOS1182
https://doi.org/10.5705/ss.2013.129
https://doi.org/10.5705/ss.2013.129
https://doi.org/10.1080/01621459.2015.1077712
https://doi.org/10.1214/aos/1031594737
https://doi.org/10.1214/aos/1031594737
https://doi.org/10.1109/MEMB.2009.934629
https://doi.org/10.1111/j.2517-6161.1977.tb01611.x
https://doi.org/10.1111/j.2517-6161.1977.tb01611.x
https://doi.org/10.1103/PhysRevE.70.066111


chanics and its Applications. RANDOMNESS AND COMPLEXITY: Proceed-
ings of the International Workshop in Honor of Shlomo Havlin’s 60th Birthday
1, 53–60. doi: 10.1016/j.physa.2003.08.022 (see pp. 21, 23).

Costa, Madalena, Ary L. Goldberger & C.-K. Peng (2005). “Multiscale Entropy
Analysis of Biological Signals”. Physical Review E 2, 021906. doi: 10.1103/
PhysRevE.71.021906 (see p. 23).

Davie, A. M. & A. J. Stothers (2013). “Improved Bound for Complexity of Ma-
trix Multiplication”. Proceedings of the Royal Society of Edinburgh: Section A
Mathematics 2, 351–369. doi: 10.1017/S0308210511001648 (see p. 20).

Dempster, A. P. (1972). “Covariance Selection”. Biometrics 1, 157–175. doi:
10.2307/2528966 (see p. 63).

Dette, Holger & Natalie Neumeyer (2001). “Nonparametric Analysis of Covari-
ance”. Annals of Statistics 5, 1361–1400. doi: 10.1214/aos/1013203458 (see
p. 1).

Dickey, David A. & Wayne A. Fuller (1979). “Distribution of the Estimators for
Autoregressive Time Series with a Unit Root”. Journal of the American Sta-
tistical Association (366a), 427–431. doi: 10.1080/01621459.1979.10482531
(see p. 213).

Donoho, David (1995). “Nonlinear Solution of Linear Inverse Problems by
Wavelet-Vaguelette Decomposition”. Applied and Computational Harmonic
Analysis, 101–126. doi: 10.1006/acha.1995.1008 (see p. 11).

Donoho, David L. (1994). “Statistical Estimation and Optimal Recovery”. Annals
of Statistics 1, 238–270. doi: 10.1214/aos/1176325367 (see p. 11).

Donoho, David L. & Iain M. Johnstone (1994). “Ideal Spatial Adaptation by
Wavelet Shrinkage”. Biometrika 3, 425–455. doi: 10.2307/2337118 (see p. 11).

– (1995). “Adapting to Unknown Smoothness via Wavelet Shrinkage”. Journal of
the American Statistical Association 432, 1200–1224. doi: 10.1080/01621459.
1995.10476626 (see p. 11).

– (1998). “Minimax Estimation via Wavelet Shrinkage”. Annals of Statistics 3,
879–921. doi: 10.1214/aos/1024691081 (see p. 12).

Donoho, David L., Iain M. Johnstone, Gerard Kerkyacharian & Dominique Pi-
card (1995). “Wavelet Shrinkage: Asymptopia?” Journal of the Royal Statistical
Society. Series B 2, 301–369. doi: 10.1111/j.2517-6161.1995.tb02032.x
(see p. 12).

Douglas, Critchlow E. & Fligner A. Michael (1991). “On Distribution-Free
Multiple Comparisons in the One-Way Analysis of Variance”. Communi-
cations in Statistics - Theory and Methods 1, 127–139. doi: 10 . 1080 /
03610929108830487 (see p. 88).

220

https://doi.org/10.1016/j.physa.2003.08.022
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1017/S0308210511001648
https://doi.org/10.2307/2528966
https://doi.org/10.1214/aos/1013203458
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1006/acha.1995.1008
https://doi.org/10.1214/aos/1176325367
https://doi.org/10.2307/2337118
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1214/aos/1024691081
https://doi.org/10.1111/j.2517-6161.1995.tb02032.x
https://doi.org/10.1080/03610929108830487
https://doi.org/10.1080/03610929108830487


Dunn, Olive Jean (1961). “Multiple Comparisons among Means”. Journal of the
American Statistical Association 293, 52–64. doi: 10.1080/01621459.1961.
10482090 (see p. 88).

Engle, Robert F., Olivier Ledoit & Michael Wolf (2017). “Large Dynamic Covari-
ance Matrices”. Journal of Business & Economic Statistics 2, 363–375. doi:
10.1080/07350015.2017.1345683 (see pp. 32, 33).

Enoka, Roger M. & Jacques Duchateau (2008). “Muscle Fatigue: What, Why and
How It Influences Muscle Function: Muscle Fatigue”. The Journal of Physiology
1, 11–23. doi: 10.1113/jphysiol.2007.139477 (see p. 99).

Fama, Eugene F. & Kenneth R. French (2004). “The Capital Asset Pricing Model:
Theory and Evidence”. Journal of Economic Perspectives 3, 25–46. doi: 10.
1257/0895330042162430 (see pp. 2, 34).

Fan, Jianqing, Theo Gasser, Irène Gijbels, Michael Brockmann & Joachim Engel
(1997). “Local Polynomial Regression: Optimal Kernels and Asymptotic Min-
imax Efficiency”. Annals of the Institute of Statistical Mathematics 1, 79–99.
doi: 10.1023/A:1003162622169 (see pp. 14, 98).

Fan, Jianqing & Irène Gijbels (1996). Local Polynomial Modelling and Its Applica-
tions. 1. CRC Press reprint. Monographs on Statistics and Applied Probability
66. Boca Raton: Chapman & Hall / CRC. 341 pp. isbn: 978-0-412-98321-4 (see
pp. 11, 12, 14, 18, 21, 64).

Fan, Jianqing, Yuan Liao & Martina Mincheva (2013). “Large Covariance Esti-
mation by Thresholding Principal Orthogonal Complements”. Journal of the
Royal Statistical Society. Series B 4, 603–680. doi: 10.1111/rssb.12016 (see
pp. 2, 3, 17, 32).

Fan, Jianqing & Qiwei Yao (1998). “Efficient Estimation of Conditional Variance
Functions in Stochastic Regression”. Biometrika 3, 645–660. doi: 10.1093/
biomet/85.3.645 (see pp. 12, 15, 71).

– (2003). Nonlinear Time Series: Nonparametric and Parametric Methods.
Springer Series in Statistics. New York: Springer-Verlag. 565 pp. isbn: 978-
0-387-26142-3. doi: 10 . 1007 / 978 - 0 - 387 - 69395 - 8 (see pp. 18, 50, 107,
113–115, 122).

Fan, Jianqing, Chunming Zhang & Jian Zhang (2001). “Generalized Likelihood
Ratio Statistics and Wilks Phenomenon”. Annals of Statistics 1, 153–193. doi:
10.1214/aos/996986505 (see pp. 21, 64, 65, 69, 74, 77, 136).

Forrest, Sarah M., John H. Challis & Samantha L. Winter (2014). “The Effect of
Signal Acquisition and Processing Choices on ApEn Values: Towards a“Gold
Standard”for Distinguishing Effort Levels from Isometric Force Records”.
Medical Engineering & Physics 6, 676–683. doi: 10 . 1016 / j . medengphy .
2014.02.017 (see pp. 4, 99).

221

https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1080/07350015.2017.1345683
https://doi.org/10.1113/jphysiol.2007.139477
https://doi.org/10.1257/0895330042162430
https://doi.org/10.1257/0895330042162430
https://doi.org/10.1023/A:1003162622169
https://doi.org/10.1111/rssb.12016
https://doi.org/10.1093/biomet/85.3.645
https://doi.org/10.1093/biomet/85.3.645
https://doi.org/10.1007/978-0-387-69395-8
https://doi.org/10.1214/aos/996986505
https://doi.org/10.1016/j.medengphy.2014.02.017
https://doi.org/10.1016/j.medengphy.2014.02.017


Fox, Emily B & David B Dunson (2015). “Bayesian Nonparametric Covariance
Regression”. Journal of Machine Learning Research 16, 2501–2542 (see pp. 18,
32).

Freeman, Linton C. (1978). “Centrality in Social Networks Conceptual Clarifica-
tion”. Social Networks 3, 215–239. doi: 10.1016/0378-8733(78)90021-7 (see
p. 28).

Friedman, Jerome, Trevor Hastie & Robert Tibshirani (2008). “Sparse Inverse
Covariance Estimation with the Graphical Lasso”. Biostatistics 3, 432–441.
doi: 10.1093/biostatistics/kxm045 (see pp. 1, 63).

Friedman, Jerome H. & Werner Stuetzle (1981). “Projection Pursuit Regression”.
Journal of the American Statistical Association 376, 817–823. doi: 10.1080/
01621459.1981.10477729 (see p. 12).

Fryzlewicz, Piotr (2014). “Wild Binary Segmentation for Multiple Change-Point
Detection”. Annals of Statistics 6, 2243–2281. doi: 10.1214/14-AOS1245 (see
pp. 5, 100).

– (2020). “Detecting Possibly Frequent Change-Points: Wild Binary Segmenta-
tion 2 and Steepest-Drop Model Selection”. Journal of the Korean Statistical
Society. doi: 10.1007/s42952-020-00060-x (see pp. 5, 100).

Gasser, Theo & Hans-Georg Müller (1979). “Kernel Estimation of Regression
Functions”. In: Smoothing Techniques for Curve Estimation. Ed. by Th. Gasser
& M. Rosenblatt. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 23–68. isbn: 978-3-540-09706-8. doi: 10.1007/BFb0098489
(see p. 44).

Gasser, Theo, Lothar Sroka & Christine Jennen-steinmetz (1986). “Residual Vari-
ance and Residual Pattern in Nonlinear Regression”. Biometrika 3, 625–633.
doi: 10.1093/biomet/73.3.625 (see p. 13).

González Manteiga, W., M.D. Martnez Miranda & A. Pérez González (2004).
“The Choice of Smoothing Parameter in Nonparametric Regression through
Wild Bootstrap”. Computational Statistics & Data Analysis 3, 487–515. doi:
10.1016/j.csda.2003.12.007 (see p. 18).

Green, P. J. & B. W. Silverman (1994). Nonparametric Regression and Gener-
alized Linear Models: A Roughness Penalty Approach. 1st ed. Monographs on
Statistics and Applied Probability 58. London ; New York: Chapman & Hall.
182 pp. isbn: 978-0-412-30040-0 (see p. 12).

Guo, Shaojun, John Leigh Box & Wenyang Zhang (2017). “A Dynamic Structure
for High-Dimensional Covariance Matrices and Its Application in Portfolio Al-
location”. Journal of the American Statistical Association 517, 235–253. doi:
10.1080/01621459.2015.1129969 (see p. 2).

222

https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1080/01621459.1981.10477729
https://doi.org/10.1080/01621459.1981.10477729
https://doi.org/10.1214/14-AOS1245
https://doi.org/10.1007/s42952-020-00060-x
https://doi.org/10.1007/BFb0098489
https://doi.org/10.1093/biomet/73.3.625
https://doi.org/10.1016/j.csda.2003.12.007
https://doi.org/10.1080/01621459.2015.1129969


Hall, Peter (1988). “Estimating the Direction in Which a Data Set Is Most In-
teresting”. Probability Theory and Related Fields 1, 51–77. doi: 10 . 1007 /
BF00348752 (see p. 114).

Hall, Peter & R. J. Carroll (1989). “Variance Function Estimation in Regression:
The Effect of Estimating the Mean”. Journal of the Royal Statistical Society.
Series B 1, 3–14. doi: 10.1111/j.2517-6161.1989.tb01744.x (see p. 13).

Hall, Peter, Nicholas I. Fisher & Branka Hoffmann (1994). “On the Nonparamet-
ric Estimation of Covariance Functions”. Annals of Statistics 4, 2115–2134.
doi: 10.1214/aos/1176325774 (see p. 1).

Hall, Peter & J. S. Marron (1990). “On Variance Estimation in Nonparametric
Regression”. Biometrika 2, 415–419. doi: 10.2307/2336824 (see pp. 12, 13).

Hall, Peter, Jeff Racine & Qi Li (2004). “Cross-Validation and the Estimation of
Conditional Probability Densities”. Journal of the American Statistical Asso-
ciation 468, 1015–1026. doi: 10.1198/016214504000000548 (see p. 194).

Hallac, David, Youngsuk Park, Stephen Boyd & Jure Leskovec (2017). Network
Inference via the Time-Varying Graphical Lasso. url: http://arxiv.org/
abs/1703.01958 (see p. 1).

Härdle, W. & A. Tsybakov (1997). “Local Polynomial Estimators of the Volatility
Function in Nonparametric Autoregression”. Journal of Econometrics 1, 223–
242. doi: 10.1016/S0304-4076(97)00044-4 (see p. 14).

Härdle, Wolfgang (1990). Applied Nonparametric Regression. Cambridge Univer-
sity Press. 356 pp. isbn: 978-0-521-42950-4 (see pp. 12, 18, 108).

Hastie, Trevor & Robert Tibshirani (1999). Generalized Additive Models. Boca
Raton, Fla: Chapman & Hall/CRC. 335 pp. isbn: 978-0-412-34390-2 (see
pp. 12, 13).

Hong, Yongmiao & Halbert White (2005). “Asymptotic Distribution Theory for
Nonparametric Entropy Measures of Serial Dependence”. Econometrica 3, 837–
901. doi: 10.1111/j.1468-0262.2005.00597.x (see pp. 7, 21, 24, 25, 30,
109, 111, 113–115, 117, 118, 120, 121, 197, 203, 206).

Hsu, Wei-Yen (2015). “Assembling A Multi-Feature EEG Classifier for Left–
Right Motor Imagery Data Using Wavelet-Based Fuzzy Approximate Entropy
for Improved Accuracy”. International Journal of Neural Systems 08, 13. doi:
10.1142/S0129065715500379 (see p. 26).

Huang, Jianhua Z., Naiping Liu, Mohsen Pourahmadi & Linxu Liu (2006). “Co-
variance Matrix Selection and Estimation via Penalised Normal Likelihood”.
Biometrika 1, 85–98. doi: 10.1093/biomet/93.1.85 (see pp. 1, 63).

Hyndman, Rob J. & George Athanasopoulos (2013). Forecasting: Principles and
Practice. S.l.: OTexts. 292 pp. isbn: 978-0-9875071-0-5 (see p. 127).

223

https://doi.org/10.1007/BF00348752
https://doi.org/10.1007/BF00348752
https://doi.org/10.1111/j.2517-6161.1989.tb01744.x
https://doi.org/10.1214/aos/1176325774
https://doi.org/10.2307/2336824
https://doi.org/10.1198/016214504000000548
http://arxiv.org/abs/1703.01958
http://arxiv.org/abs/1703.01958
https://doi.org/10.1016/S0304-4076(97)00044-4
https://doi.org/10.1111/j.1468-0262.2005.00597.x
https://doi.org/10.1142/S0129065715500379
https://doi.org/10.1093/biomet/93.1.85


Ihara, Shunsuke (1993). Information Theory for Continuous Systems. Singapore
; River Edge, N.J: World Scientific. 308 pp. isbn: 978-981-02-0985-8 (see pp. 5,
101).

Inclán, Carla & George C. Tiao (1994). “Use of Cumulative Sums of Squares
for Retrospective Detection of Changes of Variance”. Journal of the American
Statistical Association 427, 913–923. doi: 10.1080/01621459.1994.10476824
(see p. 111).

Jiang, Binyan, Ziqi Chen & Chenlei Leng (2020). “Dynamic Linear Discriminant
Analysis in High Dimensional Space”. Bernoulli 2, 1234–1268. doi: 10.3150/
19-BEJ1154 (see p. 21).

John, Rice (1984). “Boundary Modification for Kernel Regression”. Commu-
nications in Statistics - Theory and Methods 7, 893–900. doi: 10 . 1080 /
03610928408828728 (see pp. 29, 30, 108).

Johnstone, Iain M. & Arthur Yu Lu (2009). “On Consistency and Sparsity for
Principal Components Analysis in High Dimensions”. Journal of the American
Statistical Association 486, 682–693. doi: 10.1198/jasa.2009.0121 (see
pp. 1, 3).

Jolliffe, I. T. (2002). Principal Component Analysis. 2nd ed. Springer Series in
Statistics. New York: Springer-Verlag. 518 pp. isbn: 978-0-387-95442-4. doi:
10.1007/b98835 (see p. 49).

Jones, M. C. (1993). “Simple Boundary Correction for Kernel Density Estima-
tion”. Statistics and Computing 3, 135–146. doi: 10.1007/BF00147776 (see
pp. 29, 108).

Jones, M. C., J. S. Marron & S. J. Sheather (1996). “A Brief Survey of Band-
width Selection for Density Estimation”. Journal of the American Statistical
Association 433, 401–407. doi: 10.2307/2291420 (see p. 18).

Kaffashi, Farhad, Ryan Foglyano, Christopher G. Wilson & Kenneth A. Loparo
(2008). “The Effect of Time Delay on Approximate & Sample Entropy Calcu-
lations”. Physica D: Nonlinear Phenomena 23, 3069–3074. doi: 10.1016/j.
physd.2008.06.005 (see p. 25).

Kan, Raymond & Guofu Zhou (2007). “Optimal Portfolio Choice with Parameter
Uncertainty”. The Journal of Financial and Quantitative Analysis 3, 621–656.
doi: 10.1017/S0022109000004129 (see p. 63).

Karunamuni, R. J. & T. Alberts (2005). “On Boundary Correction in Kernel
Density Estimation”. Statistical Methodology 3, 191–212. doi: 10.1016/j.
stamet.2005.04.001 (see p. 14).

Katayama, Keisho, Yasuhide Yoshitake, Kohei Watanabe, Hiroshi Akima & Koji
Ishida (2010). “Muscle Deoxygenation during Sustained and Intermittent Iso-
metric Exercise in Hypoxia”. Medicine and Science in Sports and Exercise 7,
1269–1278. doi: 10.1249/MSS.0b013e3181cae12f (see p. 99).

224

https://doi.org/10.1080/01621459.1994.10476824
https://doi.org/10.3150/19-BEJ1154
https://doi.org/10.3150/19-BEJ1154
https://doi.org/10.1080/03610928408828728
https://doi.org/10.1080/03610928408828728
https://doi.org/10.1198/jasa.2009.0121
https://doi.org/10.1007/b98835
https://doi.org/10.1007/BF00147776
https://doi.org/10.2307/2291420
https://doi.org/10.1016/j.physd.2008.06.005
https://doi.org/10.1016/j.physd.2008.06.005
https://doi.org/10.1017/S0022109000004129
https://doi.org/10.1016/j.stamet.2005.04.001
https://doi.org/10.1016/j.stamet.2005.04.001
https://doi.org/10.1249/MSS.0b013e3181cae12f


Kendall, Maurice G., Alan Stuart, J. Keith Ord, Alan Stuart & Maurice G.
Kendall (1973). Inference and Relationship. 3. ed. The Advanced Theory of
Statistics 2. London: Griffin. 723 pp. isbn: 978-0-85264-215-3 (see pp. 66, 74).

Kiliç, Emrah & Pantelimon Stanica (2013). “The Inverse of Banded Matrices”.
Journal of Computational and Applied Mathematics 1, 126–135. doi: 10.1016/
j.cam.2012.07.018 (see p. 44).

Killick, R., P. Fearnhead & I. A. Eckley (2012). “Optimal Detection of Change-
points With a Linear Computational Cost”. Journal of the American Statistical
Association 500, 1590–1598. doi: 10.1080/01621459.2012.737745 (see pp. 5,
100, 102, 111, 112, 132).

Kolaczyk, Eric D. (2009). Statistical Analysis of Network Data. Springer Series in
Statistics. New York, NY: Springer New York. 397 pp. isbn: 978-0-387-88145-4.
doi: 10.1007/978-0-387-88146-1 (see p. 28).

Kolar, Mladen, Le Song, Amr Ahmed & Eric P. Xing (2010). “Estimating Time-
Varying Networks”. The Annals of Applied Statistics 1, 94–123. doi: 10.1214/
09-AOAS308 (see p. 1).

Kooperberg, Charles & Charles J. Stone (1991). “A Study of Logspline Density
Estimation”. Computational Statistics & Data Analysis 3, 327–347. doi: 10.
1016/0167-9473(91)90115-I (see p. 12).

Kooperberg, Charles, Charles J. Stone & Young K. Truong (1995a). “Logspline
Estimation of a Possibly Mixed Spectral Distribution”. Journal of Time Series
Analysis 4, 359–388. doi: 10.1111/j.1467-9892.1995.tb00240.x (see p. 12).

– (1995b). “Rate of Convergence for Logspline Spectral Density Estimation”.
Journal of Time Series Analysis 4, 389–401. doi: 10.1111/j.1467-9892.
1995.tb00241.x (see p. 12).

Kullback, S. & R. A. Leibler (1951). “On Information and Sufficiency”. Annals of
Mathematical Statistics 1, 79–86. doi: 10.1214/aoms/1177729694 (see pp. 5,
100–102).

Lam, Clifford & Jianqing Fan (2009). “Sparsistency and Rates of Convergence
in Large Covariance Matrix Estimation”. The Annals of Statistics (6B). doi:
10.1214/09-AOS720 (see p. 1).

Lam, Clifford & Qiwei Yao (2012). “Factor Modeling for High-Dimensional Time
Series: Inference for the Number of Factors”. Annals of Statistics 2, 694–726.
doi: 10.1214/12-AOS970 (see p. 50).

Lamus, Camilo, Matti S. Hämäläinen, Simona Temereanca, Emery N. Brown &
Patrick L. Purdon (2012). “A Spatiotemporal Dynamic Distributed Solution
to the MEG Inverse Problem”. Neuroimage 2, 894–909. doi: 10 . 1016 / j .
neuroimage.2011.11.020 (see p. 32).

225

https://doi.org/10.1016/j.cam.2012.07.018
https://doi.org/10.1016/j.cam.2012.07.018
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1007/978-0-387-88146-1
https://doi.org/10.1214/09-AOAS308
https://doi.org/10.1214/09-AOAS308
https://doi.org/10.1016/0167-9473(91)90115-I
https://doi.org/10.1016/0167-9473(91)90115-I
https://doi.org/10.1111/j.1467-9892.1995.tb00240.x
https://doi.org/10.1111/j.1467-9892.1995.tb00241.x
https://doi.org/10.1111/j.1467-9892.1995.tb00241.x
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/09-AOS720
https://doi.org/10.1214/12-AOS970
https://doi.org/10.1016/j.neuroimage.2011.11.020
https://doi.org/10.1016/j.neuroimage.2011.11.020


Lavielle, Marc (2005). “Using Penalized Contrasts for the Change-Point Prob-
lem”. Signal Processing 8, 1501–1510. doi: 10.1016/j.sigpro.2005.01.012
(see p. 132).

Ledoit, Olivier & Michael Wolf (2004). “A Well-Conditioned Estimator for Large-
Dimensional Covariance Matrices”. Journal of Multivariate Analysis 2, 365–
411. doi: 10.1016/S0047-259X(03)00096-4 (see pp. 26, 27, 32, 34, 37, 38,
64).

Lee, Mihee, Haipeng Shen, Jianhua Z. Huang & J. S. Marron (2010). “Biclustering
via Sparse Singular Value Decomposition”. Biometrics 4, 1087–1095. doi: 10.
1111/j.1541-0420.2010.01392.x (see p. 1).

Li, Qi & Jeffrey Scott Racine (2007). Nonparametric Econometrics: Theory and
Practice. Princeton, N.J: Princeton University Press. 746 pp. isbn: 978-0-691-
12161-1 (see pp. 12, 115, 193, 196).

Li, Y. (2011). “Efficient Semiparametric Regression for Longitudinal Data with
Nonparametric Covariance Estimation”. Biometrika 2, 355–370. doi: 10.1093/
biomet/asq080 (see p. 1).

Lu, Junwei, Mladen Kolar & Han Liu (2017). “Post-Regularization Inference
for Time-Varying Nonparanormal Graphical Models”. The Journal of Machine
Learning Research 1, 7401–7478 (see p. 1).

Lu, Sheng, Xinnian Chen, JØrgen K. Kanters, Irene C. Solomon & Ki H. Chon
(2008). “Automatic Selection of the Threshold Value $r$ for Approximate En-
tropy”. IEEE Transactions on Biomedical Engineering 8, 1966–1972. doi: 10.
1109/TBME.2008.919870 (see p. 25).

Manis, George (2008). “Fast Computation of Approximate Entropy”. Computer
Methods and Programs in Biomedicine 1, 48–54. doi: 10.1016/j.cmpb.2008.
02.008 (see p. 25).

Manis, George, Md Aktaruzzaman & Roberto Sassi (2018). “Low Computational
Cost for Sample Entropy”. Entropy 1 (1), 61. doi: 10.3390/e20010061 (see
p. 26).

Meinshausen, Nicolai & Peter Bühlmann (2006). “High-Dimensional Graphs and
Variable Selection with the Lasso”. Annals of Statistics 3, 1436–1462. doi:
10.1214/009053606000000281 (see p. 63).

Nadaraya, E. A. (1964). “On Estimating Regression”. Theory of Probability and
Its Applications 1, 141–142. doi: 10.1137/1109020 (see pp. 10, 64).

Nychka, Douglas (1995). “Splines as Local Smoothers”. Annals of Statistics 4,
1175–1197. doi: 10.1214/aos/1176324704 (see p. 12).

Page, E. S. (1954). “Continuous Inspection Schemes”. Biometrika 1-2, 100–115.
doi: 10.1093/biomet/41.1-2.100 (see pp. 5, 100, 111).

Pan, Yu-Hsiang, Yung-Hung Wang, Sheng-Fu Liang & Kuo-Tien Lee (2011).
“Fast Computation of Sample Entropy and Approximate Entropy in Biomedicine”.

226

https://doi.org/10.1016/j.sigpro.2005.01.012
https://doi.org/10.1016/S0047-259X(03)00096-4
https://doi.org/10.1111/j.1541-0420.2010.01392.x
https://doi.org/10.1111/j.1541-0420.2010.01392.x
https://doi.org/10.1093/biomet/asq080
https://doi.org/10.1093/biomet/asq080
https://doi.org/10.1109/TBME.2008.919870
https://doi.org/10.1109/TBME.2008.919870
https://doi.org/10.1016/j.cmpb.2008.02.008
https://doi.org/10.1016/j.cmpb.2008.02.008
https://doi.org/10.3390/e20010061
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1137/1109020
https://doi.org/10.1214/aos/1176324704
https://doi.org/10.1093/biomet/41.1-2.100


Computer Methods and Programs in Biomedicine 3, 382–396. doi: 10.1016/
j.cmpb.2010.12.003 (see p. 26).

Peng, Jie, Pei Wang, Nengfeng Zhou & Ji Zhu (2009). “Partial Correlation Esti-
mation by Joint Sparse Regression Models”. Journal of the American Statistical
Association 486, 735–746. doi: 10.1198/jasa.2009.0126 (see p. 1).

Pethick, Jamie, Samantha L. Winter & Mark Burnley (2016). “Loss of Knee Ex-
tensor Torque Complexity during Fatiguing Isometric Muscle Contractions Oc-
curs Exclusively above the Critical Torque”. American Journal of Physiology-
Regulatory, Integrative and Comparative Physiology 11, R1144–R1153. doi:
10.1152/ajpregu.00019.2016 (see pp. 4, 99, 129, 131).

Picard, Franck, Emilie Lebarbier, Mark Hoebeke, Guillem Rigaill, Baba Thiam
& Stéphane Robin (2011). “Joint Segmentation, Calling, and Normalization
of Multiple CGH Profiles”. Biostatistics (Oxford, England) 3, 413–428. doi:
10.1093/biostatistics/kxq076 (see p. 111).

Pincus, S. M. (1991). “Approximate Entropy as a Measure of System Complex-
ity.” Proceedings of the National Academy of Sciences of the United States of
America 6, 2297–2301. doi: 10.1073/pnas.88.6.2297 (see pp. 21, 22, 124,
129, 137).

Pincus, Steven M. & Wei-Min Huang (1992). “Approximate Entropy: Statisti-
cal Properties and Applications”. Communications in Statistics - Theory and
Methods 11, 3061–3077. doi: 10.1080/03610929208830963 (see p. 25).

Pourahmadi, Mohsen (2013). High-Dimensional Covariance Estimation. Hobo-
ken, New Jersey: Wiley. 184 pp. isbn: 978-1-118-03429-3 (see p. 1).

Qiao, Xinghao, Cheng Qian, Gareth M James & Shaojun Guo (2020). “Doubly
Functional Graphical Models in High Dimensions”. Biometrika 2, 415–431.
doi: 10.1093/biomet/asz072 (see p. 1).

Reich, Brian J., Jo Eidsvik, Michele Guindani, Amy J. Nail & Alexandra M.
Schmidt (2011). “A Class of Covariate-Dependent Spatiotemporal Covariance
Functions for the Analysis of Daily Ozone Concentration”. Ann. Appl. Stat. 4,
2425–2447. doi: 10.1214/11-AOAS482 (see p. 32).

Rhea, Christopher K., Tobin A. Silver, S. Lee Hong, Joong Hyun Ryu, Breanna E.
Studenka, Charmayne M. L. Hughes & Jeffrey M. Haddad (2011). “Noise and
Complexity in Human Postural Control: Interpreting the Different Estimations
of Entropy”. PLOS ONE 3. doi: 10.1371/journal.pone.0017696 (see p. 99).

Rice, John (1984). “Bandwidth Choice for Nonparametric Regression”. Annals of
Statistics 4, 1215–1230. doi: 10.1214/aos/1176346788 (see pp. 13, 18).

Richman, Joshua S. & J. Randall Moorman (2000). “Physiological Time-Series
Analysis Using Approximate Entropy and Sample Entropy”. American Jour-
nal of Physiology-Heart and Circulatory Physiology 6, H2039–H2049. doi: 10.
1152/ajpheart.2000.278.6.H2039 (see pp. 21, 22, 129).

227

https://doi.org/10.1016/j.cmpb.2010.12.003
https://doi.org/10.1016/j.cmpb.2010.12.003
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1152/ajpregu.00019.2016
https://doi.org/10.1093/biostatistics/kxq076
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1080/03610929208830963
https://doi.org/10.1093/biomet/asz072
https://doi.org/10.1214/11-AOAS482
https://doi.org/10.1371/journal.pone.0017696
https://doi.org/10.1214/aos/1176346788
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1152/ajpheart.2000.278.6.H2039


Robinson, P. M. (1991). “Consistent Nonparametric Entropy-Based Testing”. Rev
Econ Stud 3, 437–453. doi: 10.2307/2298005 (see pp. 21, 24, 25, 114).

Rothman, Adam J. (2012). “Positive Definite Estimators of Large Covariance
Matrices”. Biometrika 3, 733–740. doi: 10.1093/biomet/ass025 (see pp. 1,
38).

Rothman, Adam J., Elizaveta Levina & Ji Zhu (2009). “Generalized Thresholding
of Large Covariance Matrices”. null 485, 177–186. doi: 10.1198/jasa.2009.
0101 (see p. 38).

– (2010). “A New Approach to Cholesky-Based Covariance Regularization in
High Dimensions”. Biometrika 3, 539–550. doi: 10.1093/biomet/asq022 (see
p. 44).

Roussas, GG & D Ioannides (1988). “Probability Bounds for Sums in Triangular
Arrays of Random Variables under Mixing Conditions”. Statistical Theory and
Data Analysis II , 293–308 (see p. 195).

Rukhin, Andrew L. (2000). “Approximate Entropy for Testing Randomness”.
Journal of Applied Probability 1, 88–100. doi: 10.1239/jap/1014842270 (see
p. 25).

Ruppert, D., S. J. Sheather & M. P. Wand (1995). “An Effective Bandwidth Se-
lector for Local Least Squares Regression”. Journal of the American Statistical
Association 432, 1257–1270. doi: 10.2307/2291516 (see p. 18).

Ruppert, David, M. P. Wand, Ulla Holst & Ola HöSJER (1997). “Local Poly-
nomial Variance-Function Estimation”. Technometrics 3, 262–273. doi: 10.
1080/00401706.1997.10485117 (see pp. 12, 14).

Sabidussi, Gert (1966). “The Centrality Index of a Graph”. Psychometrika 4,
581–603. doi: 10.1007/BF02289527 (see p. 28).

Shao, Jun (1997). “An Asymptotic Theory for Linear Model Selection”. Statistica
Sinica 2, 221–242 (see pp. 111, 191, 192).

Shen, Haipeng & Jianhua Z. Huang (2008). “Sparse Principal Component Analy-
sis via Regularized Low Rank Matrix Approximation”. Journal of Multivariate
Analysis 6, 1015–1034. doi: 10.1016/j.jmva.2007.06.007 (see pp. 1, 3).

Shi, Bo, Yudong Zhang, Chaochao Yuan, Shuihua Wang & Peng Li (2017). “En-
tropy Analysis of Short-Term Heartbeat Interval Time Series during Regular
Walking”. Entropy 10 (10), 568. doi: 10.3390/e19100568 (see p. 4).

Shibata, Ritei (1981). “An Optimal Selection of Regression Variables”. Biometrika
1, 45–54. doi: 10.2307/2335804 (see pp. 111, 191).

Taylor, Paul G., Michael Small, Kwee-Yum Lee, Raul Landeo, Damien M.
O’Meara & Emma L. Millett (2016). “A Surrogate Technique for Investigating
Deterministic Dynamics in Discrete Human Movement”. Motor Control 4,
459–470. doi: 10.1123/mc.2015-0043 (see p. 99).

228

https://doi.org/10.2307/2298005
https://doi.org/10.1093/biomet/ass025
https://doi.org/10.1198/jasa.2009.0101
https://doi.org/10.1198/jasa.2009.0101
https://doi.org/10.1093/biomet/asq022
https://doi.org/10.1239/jap/1014842270
https://doi.org/10.2307/2291516
https://doi.org/10.1080/00401706.1997.10485117
https://doi.org/10.1080/00401706.1997.10485117
https://doi.org/10.1007/BF02289527
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.3390/e19100568
https://doi.org/10.2307/2335804
https://doi.org/10.1123/mc.2015-0043


Udhayakumar, Radhagayathri K., Chandan Karmakar & Marimuthu Palaniswami
(2017). “Approximate Entropy Profile: A Novel Approach to Comprehend
Irregularity of Short-Term HRV Signal”. Nonlinear Dyn 2, 823–837. doi:
10.1007/s11071-016-3278-z (see p. 25).

Vieu, Philippe (1991). “Smoothing Techniques in Time Series Analysis”. In: Non-
parametric Functional Estimation and Related Topics. Ed. by George Roussas.
NATO ASI Series. Dordrecht: Springer Netherlands, 271–283. isbn: 978-94-
011-3222-0. doi: 10.1007/978-94-011-3222-0_21 (see p. 194).

– (1995). “Order Choice in Nonlinear Autoregressive Models”. Statistics 4, 307–
328. doi: 10.1080/02331889508802499 (see pp. 111, 191–195).

Wakeman, Daniel G. & Richard N. Henson (2015). “A Multi-Subject, Multi-
Modal Human Neuroimaging Dataset”. Scientific Data 1 (1), 150001. doi:
10.1038/sdata.2015.1 (see p. 4).

Wand, M. P. & M. C. Jones (1995). Kernel Smoothing. 1st ed. Monographs on
Statistics and Applied Probability 60. London ; New York: Chapman & Hall.
212 pp. isbn: 978-0-412-55270-0 (see pp. 11, 14, 18).

Wang, Hanchao, Bin Peng, Degui Li & Chenlei Leng (2020). “Nonparametric
Estimation of Large Covariance Matrices with Conditional Sparsity”. SSRN
Journal. doi: 10.2139/ssrn.3515624 (see pp. 1, 2).

Wang, Jialei & Mladen Kolar (2014). Inference for Sparse Conditional Precision
Matrices. url: http://arxiv.org/abs/1412.7638 (see p. 63).

Wasserman, Larry (2006). All of Nonparametric Statistics. Springer Texts in
Statistics. New York: Springer. isbn: 978-0-387-25145-5 (see pp. 12, 111).

Watson, Geoffrey S. (1964). “Smooth Regression Analysis”. Sankhy: The Indian
Journal of Statistics, Series A (1961-2002) 4, 359–372 (see p. 10).

Witten, D. M., R. Tibshirani & T. Hastie (2009). “A Penalized Matrix Decomposi-
tion, with Applications to Sparse Principal Components and Canonical Correla-
tion Analysis”. Biostatistics 3, 515–534. doi: 10.1093/biostatistics/kxp008
(see p. 1).

Wold, Herman O. A. (1948). “On Prediction in Stationary Time Series”. The
Annals of Mathematical Statistics 4, 558–567. doi: 10.1214/aoms/1177730151
(see pp. 107, 191).

Xu, Lin, Man-Lai Tang & Ziqi Chen (2019). “Analysis of Longitudinal Data by
Combining Multiple Dynamic Covariance Models”. Statistics and Its Interface
3, 479–487. doi: 20190612152513 (see p. 21).

Yang, Dan, Zongming Ma & Andreas Buja (2014). “A Sparse Singular Value
Decomposition Method for High-Dimensional Data”. Journal of Computational
and Graphical Statistics 4, 923–942. doi: 10.1080/10618600.2013.858632
(see p. 1).

229

https://doi.org/10.1007/s11071-016-3278-z
https://doi.org/10.1007/978-94-011-3222-0_21
https://doi.org/10.1080/02331889508802499
https://doi.org/10.1038/sdata.2015.1
https://doi.org/10.2139/ssrn.3515624
http://arxiv.org/abs/1412.7638
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1214/aoms/1177730151
https://doi.org/20190612152513
https://doi.org/10.1080/10618600.2013.858632


Yang, Jilei & Jie Peng (2018). Estimating Time-Varying Graphical Models. url:
http://arxiv.org/abs/1804.03811 (see p. 1).

Yentes, Jennifer M., Nathaniel Hunt, Kendra K. Schmid, Jeffrey P. Kaipust,
Denise McGrath & Nicholas Stergiou (2013). “The Appropriate Use of Ap-
proximate Entropy and Sample Entropy with Short Data Sets”. Ann Biomed
Eng 2, 349–365. doi: 10.1007/s10439-012-0668-3 (see p. 26).

Yin, Jianxin, Zhi Geng, Runze Li & Hansheng Wang (2010). “Nonparametric
Covariance Model”. Stat Sin, 469–479 (see pp. 1, 2, 6, 7, 16–19, 21, 32, 35,
38, 43, 47, 61, 68, 135, 137).

Yu, K & M. C Jones (2004). “Likelihood-Based Local Linear Estimation of the
Conditional Variance Function”. Journal of the American Statistical Associa-
tion 465, 139–144. doi: 10.1198/016214504000000133 (see pp. 12, 15, 16,
71, 98).

Yuan, Ming & T. Tony Cai (2010). “A Reproducing Kernel Hilbert Space Ap-
proach to Functional Linear Regression”. Annals of Statistics 6, 3412–3444.
doi: 10.1214/09-AOS772 (see pp. 55, 77, 79).

Yuan, Ming & Y. Lin (2007). “Model Selection and Estimation in the Gaussian
Graphical Model”. Biometrika 1, 19–35. doi: 10.1093/biomet/asm018 (see
pp. 1, 63).

Zhang, Jian & Jie Li (2021). “Factorized Estimation of High-Dimensional Non-
parametric Covariance Models”. Scandinavian Journal of Statistics. doi: 10.
1111/sjos.12529 (see pp. 50, 51, 53, 59).

Zhang, Jian & Chao Liu (2015). “On Linearly Constrained Minimum Variance
Beamforming”. Journal of Machine Learning Research 65, 2099–2145. url:
http://jmlr.org/papers/v16/zhang15b.html (see pp. 32, 50, 55, 79).

Zhang, Jian & Li Su (2015). “Temporal Autocorrelation-Based Beamforming
With MEG Neuroimaging Data”. Journal of the American Statistical Asso-
ciation 512, 1375–1388. doi: 10.1080/01621459.2015.1054488 (see p. 32).

Zhou, Shuheng, John Lafferty & Larry Wasserman (2010). “Time Varying Undi-
rected Graphs”. Machine Learning 2, 295–319. doi: 10.1007/s10994-010-
5180-0 (see pp. 1, 81).

Zou, Tao, Wei Lan, Hansheng Wang & Chih-Ling Tsai (2017). “Covariance Re-
gression Analysis”. Journal of the American Statistical Association 517, 266–
281. doi: 10.1080/01621459.2015.1131699 (see p. 63).

Zurek, Sebastian, Przemyslaw Guzik, Sebastian Pawlak, Marcin Kosmider &
Jaroslaw Piskorski (2012). “On the Relation between Correlation Dimension,
Approximate Entropy and Sample Entropy Parameters, and a Fast Algorithm
for Their Calculation”. Physica A: Statistical Mechanics and its Applications
24, 6601–6610. doi: 10.1016/j.physa.2012.07.003 (see p. 26).

230

http://arxiv.org/abs/1804.03811
https://doi.org/10.1007/s10439-012-0668-3
https://doi.org/10.1198/016214504000000133
https://doi.org/10.1214/09-AOS772
https://doi.org/10.1093/biomet/asm018
https://doi.org/10.1111/sjos.12529
https://doi.org/10.1111/sjos.12529
http://jmlr.org/papers/v16/zhang15b.html
https://doi.org/10.1080/01621459.2015.1054488
https://doi.org/10.1007/s10994-010-5180-0
https://doi.org/10.1007/s10994-010-5180-0
https://doi.org/10.1080/01621459.2015.1131699
https://doi.org/10.1016/j.physa.2012.07.003

