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Confidence interval construction for the difference between two
correlated proportions with missing observations
Nian-Sheng Tanga, Hui-Qiong Lia, Man-Lai Tangb, and Jie Lia

aDepartment of Statistics, Yunnan University, Kunming, P. R. China; bDepartment of Mathematics and Statistics,
Hang Seng Management College, Shatin, N.T., Hong Kong

ABSTRACT
Under the assumption of missing at random, eight confidence intervals (CIs)
for the difference between two correlated proportions in the presence of
incomplete paired binary data are constructed on the basis of the likelihood
ratio statistic, the score statistic, the Wald-type statistic, the hybrid method
incorporated with the Wilson score and Agresti–Coull (AC) intervals, and the
Bootstrap-resampling method. Extensive simulation studies are conducted
to evaluate the performance of the presented CIs in terms of coverage
probability and expected interval width. Our empirical results evidence that
the Wilson-score-based hybrid CI and the Wald-type CI together with the
constrained maximum likelihood estimates perform well for small-to-mod-
erate sample sizes in the sense that (i) their empirical coverage probabilities
are quite close to the prespecified confidence level, (ii) their expected
interval widths are shorter, and (iii) their ratios of the mesial non-coverage
to non-coverage probabilities lie in interval [0.4, 0.6]. An example from a
neurological study is used to illustrate the proposed methodologies.
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1. Introduction

Incomplete matched-pair data are often encountered in paired-comparison studies of two treatments
or two different conditions of the same treatment. For example, in a neurological study of meningitis
patients (Choi and Stablein, 1982), 33 young meningitis patients at the St. Louis Children’s Hospital
were given neurological tests at the time of admission and at the end of a standard treatment on
neurological complication. In that study, 25 patients received neurological tests at the beginning and
at the end of the standard treatment, 6 patients received neurological tests only at the beginning but
not at the end of the standard treatment, and 2 patients received neurological tests only at the end
but not at the beginning of the standard treatment. Thus, the resultant data included two parts: the
complete and paired observations, and the unpaired observations. The data are presented in Table 1
in which 1 and 0 represent the absence and presence of neurological complication, respectively.

In the aforementioned neurological clinical trial, one would like to test the equality of the
incidence rates of neurological complication before and after the standard treatment. To this end,
one could construct a 100(1 − α)% confidence interval (CI) for the difference between two correlated
proportions in the presence of incomplete paired binary data. If the resultant CI entirely lies in the
interval (−δ0, δ0) with δ0 (> 0) being some pre-specified clinically acceptable threshold, one cannot
reject the equality of two proportions at the significance level α. Hence, motivated by the aforemen-
tioned neurological data, we consider CI construction for the difference between two correlated
proportions in the presence of incomplete paired binary data.
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The problem of testing the equality and CI construction of the difference between two correlated
proportions in the presence of incomplete paired binary data has received considerable attention in
past years. For example, ones can consult Choi and Stablein (1982), Ekbohm (1982), Campbell
(1984), Bhoj and Snijders (1986), Thomson (1995) for the large sample method, and Pradhan et al.
(2013) for the corrected profile likelihood method. When sample size is small, Tang and Tang (2004)
proposed the exact unconditional test procedure for testing equality of two correlated proportions
with incomplete correlated data. Tang et al. (2009) developed the exact unconditional and approx-
imate unconditional CIs for proportion difference in the presence of incomplete paired binary data.
Lin et al. (2009) presented a Bayesian method to test equality of two correlated proportions with
incomplete correlated data. However, all the aforementioned methods were developed under the
assumption of missing completely at random (MCAR), i.e., the probability of missing is independent
of treatment and outcome (Choi and Stablein, 1982).

Statistical inference on incomplete paired binary data under the assumption of missing at random
(MAR) has received limited attention (see, Choi and Stablein, 1988; Little and Robin, 2002; Chang,
2009). For example, Choi and Stablein (1988) discussed the problem of testing the equality of two
correlated proportions under the assumption of MAR, and pointed out that those tests that utilize all
the data are generally more efficient than those discarding part of the data. Chang (2009) proposed
an expectation-maximization (EM) algorithm to evaluate the maximum likelihood estimates (MLEs)
of two correlated proportions under the assumption of MAR and concluded that their proposed
estimators are more efficient than those conventional estimators in terms of asymptotic relative
efficiency. However, to our knowledge, little work has been done on CI construction for the
difference between two correlated proportions under the assumption of MAR.

Inspired by Shao and Tu (1995), Newcombe (1998b) and Zou and Donner (2008), we develop
eight CIs for proportion difference in the presence of incomplete paired binary data under the
assumption of MAR (Chang, 2009; Choi and Stablein, 1988) based on the likelihood ratio test, score
test, Wald-type test, hybrid method and Bootstrap-resampling method. The derived hybrid CI
possesses a closed-form expression, which largely reduces the computational burden, and the
presented Bootstrap-resampling CIs have not been considered in the literature related to missing
observations. These CIs can be used for analysis of incomplete paired binary data as well as of
complete paired binary data.

The rest of this article is organized as follows. Section 2 first reviews the missing mechanism given in
Chang (2009). Five different methods are then presented to construct CIs for correlated proportion
difference under the MAR assumption in Section 2. Simulation studies are conducted to evaluate the
performance of the proposed CIs in terms of coverage probability, expected interval width, and mesial and
distal non-coverage probabilities in Section 3. An example from the aforementioned neurological study is
used to illustrate the proposed methodologies in Section 4. A brief discussion is given in Section 5.

2. Model and confidence interval estimators

2.1. Model

Consider a crossover design in which two treatments (e.g., treatment A and treatment B) are
sequentially performed on the same subject. We may assume that X and Y are outcomes of two

Table 1. Neurological complication data from Choi and Stablein (1982).

Y ¼ 0 Y ¼ 1 Missing Y Total

X ¼ 0 8 8 4 20
X ¼ 1 3 6 2 11
Missing X 2 0 – 2
Total 13 14 6 33

X = beginning of treatment; Y = end of treatment.
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treatments sequentially applied to the same subject. Denote all the possible values of X and Y by 0
and 1. We consider the situation where a portion of observations is complete and paired, and the
remainder is incomplete and unpaired. Let nij be the number of subjects who sequentially underwent
both treatments (i.e., with both X and Y being observed) with outcome X ¼ i and Y ¼ j for
i; j ¼ 0; 1, nx be the number of subjects who alone underwent treatment A (i.e., with only X being
observed) and ny be the number of subjects who alone underwent treatment B (i.e., with only Y
being observed), nx0 be the number of subjects who alone underwent treatment A with outcome X =
0, ny0 be the number of subjects who alone underwent treatment B with outcome Y = 0, and z be the
number of subjects who did not undergo either treatment A or treatment B. Thus, nx1 ¼ nx � nx0
represents the number of subjects who alone underwent treatment A with outcome X = 1, and ny1 ¼
ny � ny0 represents the number of subjects who alone underwent treatment B with outcome Y = 1.
Denote n ¼ n00 þ n01 þ n10 þ n11, n0þ ¼ n00 þ n01, n1þ ¼ n10 þ n11, nþ0 ¼ n00 þ n10,
nþ1 ¼ n01 þ n11. Since subjects who did not undergo either treatment A or treatment B do not
provide any information for estimating response rates, these subjects will be excluded from the final
data analysis (e.g., Chang, 2009). Hence, similar to Chang (2009), we assume that z = 0, which
indicates that N ¼ nþ nx þ ny. The data can be summarized in Table 2.

Let PEE be the probability that a subject sequentially underwent both treatments A and B, PEI be
the probability that a subject alone underwent treatment A, PIE be the probability that a subject
alone underwent treatment B, and PII be the probability that a subject did not undergo either of
treatments A and B. Similar to Chang (2009), we assume PII ¼ 0. Let pij be the conditional
probability of the subject having experimental outcome X = i and Y ¼ j i; j ¼ 0; 1ð Þ given a subject
sequentially underwent both treatments A and B. Hence, we have PEE þ PEI þ PIE ¼ 1 and
p00 þ p01 þ p10 þ p11 ¼ 1. Denote p0þ ¼ p00 þ p01 and pþ0 ¼ p00 þ p10, which are the response
rates for X = 0 and Y = 0, respectively. Following Choi and Stablein (1988) and Chang (2009),
we assume that the missing mechanism is MAR, i.e., the probability of missing is independent of
the outcome but dependent of the treatment (Little and Robin, 2002). In other words, the
assumption of MAR is equivalent to that the probability of a missing observation differs for
different treatments but is constant for the same treatment irrespective of the outcome (Choi and
Stablein, 1988). Mathematically, Ρ (outcome (i.e., X or Y) is missing|outcome, treatment (i.e., A or
B)) = Ρ (outcome (i.e., X or Y) is missing|treatment (i.e., A or B)). Hence, it follows from the
multiplication rule of probability that the cell probability corresponding to nij is πij ¼ P (sequen-
tially underwent both treatments and outcome X = i and Y = j) = PEEΡ (outcome X = i, Y = j|
sequentially underwent both treatments) = PEEpij for i, j = 0, 1. Similarly, the probabilities
corresponding to nx0 and ny0 are PEIp0þ and PIEpþ0, respectively. Therefore, the observed data D ¼
n00; n01; n10; n11; nx0; nx1; ny0; ny1
� �

can be assumed to come from the following multinomial
distribution:

P DjN; θ; PEE; PEIð Þ ¼ c � PEEp00ð Þn00 PEEp01ð Þn01 PEEp10ð Þn10 PEEp11ð Þn11
� PEIp0þð Þnx0 PEIp1þð Þnx1 PIEpþ0ð Þny0 PIEpþ1ð Þny1
¼ c � pn0000 p

n01
01 p

n10
10 p

n11
11 p

nx0
0þp

nx1
1þp

ny0
þ0p

ny1
þ1P

n
EEP

nx
EIP

ny
IE;

(1)

where c ¼ N!= n00!n01!n10!n11!nx0!nx1!ny0!ny1!
� �

, nx1 ¼ nx � nx0, ny1 ¼ ny � ny0, p1þ ¼ 1� p0þ,
pþ1 ¼ 1� pþ0 and θ ¼ p00; p01; p10ð Þ.

Table 2. Observed frequencies for a matched-pair design with missing observations.

Y ¼ 0 Y ¼ 1 Missing Y Total

X ¼ 0 n00 n01 nx0 n0þ þ nx0
X ¼ 1 n10 n11 nx � nx0 n1þ þ nx � nx0
Missing X ny0 ny � ny0 z ¼ 0 ny
Total nþ0 þ ny0 nþ1 þ ny � ny0 nx N ¼ nþ nx þ ny
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2.2. Confidence interval estimators

In this article, our main purpose is to construct CI for the correlated proportion differ-
ence Δ ¼ p0þ � pþ0 ¼ p01 � p10.

2.2.1. CI based on the likelihood ratio test
Let p̂ij be the maximum likelihood estimator (MLE) of pij for i, j = 0, 1. It follows from Chang (2009)
that p̂00, p̂01, p̂10, and p̂11 can be obtained via the EM algorithm, which is presented in Appendix A. It
can be shown from Equation (1) that the MLEs of PEE, PEI, and PIE are given by P̂EE ¼ n=N,
P̂EI ¼ nx=N, and P̂IE ¼ ny=N, respectively.

Let ~pij be the constrained MLE of pij under H0 : p0þ � pþ0 ¼ Δ for i, j = 0, 1. Thus, it follows from
Equation (1) that ~p00 and ~p10 satisfy the following equations:

n00
~p00

� n11
~p11

þ nx0
~p0þ

� nx1
1�~p0þ

þ ny0
~pþ0

� ny1
1�~pþ0

¼ 0;
n01
~p01

þ n10
~p10

� 2n11
~p11

þ nx0
~p0þ

� nx1
1�~p0þ

þ ny0
~pþ0

� ny1
1�~pþ0

¼ 0;

(
(2)

where ~p01 ¼ ~p10 þ Δ, ~p11 ¼ 1� ~p00 � 2~p10 � Δ, ~p0þ ¼ ~pþ0 þ Δ, and ~pþ0 ¼ ~p00 þ ~p10. The likelihood
ratio statistic (Choi and Stablein, 1982) for testing H0 : p0þ � pþ0 ¼ Δ is then given by

TlðΔÞ ¼ 2 l p̂00; p̂01; p̂10; p̂11ð Þ � l ~p00; ~p01; ~p10; ~p11ð Þf g;
which is asymptotically distributed as the chi-squared distribution with one degree of freedom under
H0 : p0þ � pþ0 ¼ Δ, where l p00; p01; p10; p11ð Þ ¼ n00 log p00 þ n01 log p01 þ n10 log p10 þ n11 log p11 þ
nx0 log p0þ þ nx1 log 1� p0þð Þ þ ny0 log pþ0 þ ny1 log 1� pþ0ð Þ. Therefore, the approximate 100(1 −
α)% likelihood-ratio-test-based CI for Δ is given by ΔL;ΔU½ �, where � 1 � ΔL � ΔU � 1 are the
smaller and larger roots of Δ to the following equation

Tl Δð Þ ¼ χ21;α;

where χ21;α is the upper α-percentile of the central χ2 distribution with one degree of freedom. There
are no closed-form expressions for ΔL and ΔU . Hence, the bisection searching algorithm can be used
to obtain ΔL and ΔU .

2.2.2. CI based on the score test
After some routine computation, the score statistic for testing the null hypothesis H0 : p0þ � pþ0 ¼
Δ can be shown to be

Ts Δð Þ ¼ n01
~p01

� n11
~p11

þ nx0
~p0þ

� nx1
~p1þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A2 þ ~aþ ~b

� �
~A1

~B1 þ ~A1~a~bþ ~B2~aþ ~B3
~b

vuut
;

which is asymptotically distributed as the standard normal distribution under H0, where ~Nij ¼ n=~pij
for i, j = 0, 1, ~a ¼ nx= ~p0þð1� ~p0þÞf g, ~b ¼ ny= ~pþ0ð1� ~pþ0Þf g, ~p01 ¼ ~p10 þ Δ,

~p11 ¼ 1� ~p00 � 2~p10 � Δ, ~A1 ¼
P2

i¼1

P2
j¼1

~Nij, ~A2 ¼ ð~N00 þ ~N11Þð~N01 þ ~N10Þþ 4~N00 ~N11, ~B1 ¼
~N00 ~N01 ~N1þ þ ~N10 ~N11 ~N0þ with ~N1þ ¼ ~N10 þ ~N11 and ~N0þ ¼ ~N00 þ ~N01, ~B2 ¼ ~N0þ ~N1þ,
~B3 ¼ ð~N00 þ ~N10Þð~N01 þ ~N11Þ, and ~B4 ¼ ~A1. Detailed derivation for TsðΔÞ is presented in
Appendix B. The approximate 100(1 − α)% confidence limits ΔL and ΔU for Δ via score test statistic
can be obtained by solving the following equation:

TsðΔÞ ¼ �zα=2;

where the plus and minus signs correspond to the lower limit ΔL and the upper limit ΔU ,
respectively, and � 1 � ΔL � ΔU � 1. These two limits can be obtained by using the secant
algorithm (Tango, 1998).
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2.2.3. CI based on the Wald-type statistic
Let Δ̂ ¼ p̂0þ � p̂þ0 be the MLE of Δ. It follows from Chang (2009) that the asymptotic expectation of
Δ̂ is given by EðΔ̂Þ � Δ, and the asymptotic variances of p̂0þ and p̂þ0 can be estimated by

dVar p̂0þð Þ ¼ 1

NÂ0
P̂EED̂1 þ P̂IE

D̂3

D̂2

" #
; and

dVar p̂þ0ð Þ ¼ 1

NÂ0
P̂EED̂2 þ P̂EI

D̂3

D̂1

" #
;

(3)

respectively, where D̂1 ¼ p̂0þð1� p̂0þÞ, D̂2 ¼ p̂þ0ð1� p̂þ0Þ, D̂3 ¼ p̂00p̂01p̂1þþ p̂0þp̂10p̂11, and

Â0 ¼ P̂EE þ P̂EIP̂IED̂3=ðD̂1D̂2Þ. Similar to Chang (2009), it is shown that the covariance of p̂0þ and
p̂þ0 is given by Covðp̂0þ; p̂þ0Þ ¼ �PEEðp00p11 � p01p10Þ=ðNA0Þ, which can be estimated bydCovðp̂0þ; p̂þ0Þ ¼ �P̂EEðp̂00p̂11 � p̂01p̂10Þ=ðNÂ0Þ. Thus, the asymptotic variance of Δ̂ can be expressed as

dVarðΔ̂Þ ¼dVarðp̂0þÞ þdVarðp̂þ0Þ � 2
P̂EE
NÂ0

ðp̂00p̂11 � p̂01p̂10Þ:

An approximate 100ð1� αÞ% CI for Δ on the basis of the Wald-type statistic

Tw1 ¼ ðΔ̂� ΔÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðΔ̂Þq

, which is asymptotically distributed as the standard normal distribution,

is given by

maxf�1; Δ̂� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðΔ̂Þq
g; minf1; Δ̂þ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðΔ̂Þq
g

	 

;

which is denoted as Tw1-CI. It has been shown that truncating interval to lie within [−1, 1] makes the
interval unsatisfactory (Newcombe, 1998a).

On the other hand, the asymptotic variances of p̂0þ and p̂þ0 can be estimated by

fvar p̂0þð Þ ¼ 1

N~A0
P̂EE ~D1 þ P̂IE

~D3

~D2

" #
; and fvar p̂þ0ð Þ ¼ 1

N~A0
P̂EE ~D2 þ P̂EI

~D3

~D1

" #
; (4)

respectively, where ~D1 ¼ ~p0þ 1� ~p0þð Þ, D̂2 ¼ p̂þ0ð1� p̂þ0Þ, ~D3 ¼ ~p00~p01~p1þþ ~p0þ~p10~p11, and
~A0 ¼ P̂EE þ P̂EIP̂IE ~D3= ~D1

~D2

� �
. Thus, the asymptotic variance of Δ̂ can be estimated by

fvar Δ̂
� � ¼ fvar p̂0þð Þ þ fvar p̂þ0ð Þ � 2

P̂EE
N~A0

ð~p00~p11 � ~p01~p10Þ:

An approximate 100(1 − α)% CI for Δ on the basis of the Wald-type statistic

Tw2ðΔÞ ¼ ðΔ̂� ΔÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffifvarðΔ̂Þq

, which is asymptotically distributed as the standard normal distribu-

tion, can be obtained by solving the following equation:

Tw2ðΔÞ ¼ �zα=2;

where the plus and minus signs correspond to the lower limit ΔL and the upper limit ΔU ,
respectively, and � 1 � ΔL � ΔU � 1, which is denoted as Tw2-CI.

2.2.4. CI based on the hybrid method
Let l0þ and lþ0 be the lower limits of the approximate 100(1−α)% two-sided CIs for p0þ and pþ0,

respectively. By the central limit theorem, we have l0þ ¼ p̂0þ � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðp̂0þ Þq
and

lþ0 ¼ p̂þ0 � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðp̂þ0 Þ
q

. Thus, we can obtain
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dVarlðp̂0þ Þ ¼ ðp̂0þ � l0þÞ2=z2α=2; dVarlðp̂þ0 Þ ¼ ðp̂þ0 � lþ0Þ2=z2α=2: (5)

Similarly, for the upper limits u0þ and uþ0 of p0þ and pþ0, we have

dVaruðp̂0þ Þ ¼ ðu0þ � p̂0þÞ2=z2α=2; dVaruðp̂þ0 Þ ¼ ðuþ0 � p̂þ0Þ2=z2α=2: (6)

From Equations (5) and (6), we observe that the variance estimate dVarlðp̂0þ Þ (or dVarlðp̂þ0 Þ) is

different from dVaruðp̂0þ Þ (or dVaruðp̂þ0 Þ) when the CI ðl0þ ; u0þ Þ (or ðlþ0 ; uþ0 Þ) is asymmetric
about p̂0þ (or p̂þ0 ) (Zou et al., 2009).

Since Var Δ̂
� � ¼ Var p̂0þð Þ þ Var p̂þ0ð Þ � 2ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var p̂0þð ÞVar p̂þ0ð Þp

, where ρ is the correlation coef-
ficient of p̂0þ and p̂þ0, the approximate 100 1� αð Þ% confidence lower and upper limits for Δ based
on the Wald-type statistic are given by

L ¼ Δ̂� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar Δ̂
� �q

; U ¼ Δ̂þ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar Δ̂
� �q

; (7)

respectively, where dVar Δ̂
� � ¼dVar p̂0þð Þ þdVar p̂þ0ð Þ � 2ρ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar p̂0þð ÞdVar p̂þ0ð Þ
q

, and ρ̂ is consistent
estimator of ρ. Substituting (5) and (6) into (7) yields

L ¼ Δ̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂0þ � l0þð Þ2þ uþ0 � p̂þ0ð Þ2�2ρ̂ p̂0þ � l0þð Þ uþ0 � p̂þ0ð Þ

q
; (8)

U ¼ Δ̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0þ � p̂0þð Þ2þ p̂þ0 � lþ0ð Þ2�2ρ̂ u0þ � p̂0þð Þ p̂þ0 � lþ0ð Þ

q
; (9)

where Δ̂ ¼ p̂0þ � p̂þ0. By Equations (8) and (9), it is necessary to compute ρ̂ in evaluating confidence
limits L and U. Note that ρ has the following expression

ρ ¼ Cov p̂0þ; p̂þ0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var p̂0þð ÞVar p̂þ0ð Þp ¼ PEE �p01p10 þ p00p11ð Þ

NA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var p̂0þð ÞVar p̂þ0ð Þp : (10)

Hence, ρ̂ can be evaluated by replacing pij, PEE, and PEI in Equation (10) by their corresponding
MLEs p̂ij or ~pij, P̂EE, and P̂EI . That is, ρ can be estimated by

ρ̂ ¼ �p̂01p̂10 þ p̂00p̂11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̂1 þ P̂IED̂3= P̂EED̂2

� �n o
D̂2 þ P̂EID̂3= P̂EED̂1

� �n or : (11)

Also, to obtain confidence limits L and U of Δ via Equations (8) and (9), it is necessary to evaluate
the confidence limits l0þ, lþ0, u0þ, and uþ0. To this end, we consider the following two methods.

(A) The Wilson score CI

From Table 2 and model assumptions given in Section 2.1, we have n0þ þ nx0,B N; PEþp0þð Þ and
nþ0 þ ny0,B N; PþEpþ0ð Þ, where PEþ ¼ PEE þ PEI and PþE ¼ PEE þ PIE. Thus, p0þ and pþ0 can be
estimated by p

^

0þ ¼ n0þ þ nx0ð Þ= nþ nxð Þ and p
^

þ0 ¼ nþ0 þ ny0
� �

= nþ ny
� �

, respectively. According

to the central limit theorem and Appendix C, NP̂Eþ
� �1=2

p
^

0þ � p0þ
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þ 1� p0þð Þp

is asymptoti-
cally distributed as the standard normal distribution, which implies

P
NP̂Eþ
� �1=2

p
^

0þ � p0þ
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0þ 1� p0þð Þp � zα=2

 !
¼ P

NP̂Eþ
� �

p
^

0þ � p0þ
� �2

p0þ 1� p0þð Þ � z2α=2

 !
¼ 1� α:

Hence, the lower lws0þ
� �

and upper uws0þ
� �

limits of the 100 1� αð Þ% two-sided Wilson score CI for
p0þ are the smaller and larger roots to the following quadratic equation with respect to parameter

p0þ : NP̂Eþ
� �

p
^

0þ � p0þ
� �2

= p0þ 1� p0þð Þf g ¼ z2α=2, which yields
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lws0þ ¼ p
^

0þ � zα=2
~n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

z2α=2
4

s
and uws0þ ¼ p

^

0þ þ zα=2
~n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

z2α=2
4

s
;

where A ¼ NP̂Eþp
^

0þ 1� p
^

0þ
� �

, p
^

0þ ¼ n0þ þ nx0 þ 0:5z2α=2

� �
=~n0, and ~n0 ¼ NP̂Eþþ z2α=2. Similarly,

the lower lwsþ0

� �
and upper uwsþ0

� �
limits of the 100 1� αð Þ% two-sided Wilson score CI for pþ0 can be

expressed as

lwsþ0 ¼ p
^

þ0 �
zα=2
~n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ

z2α=2
4

s
and uwsþ0 ¼ p

^

þ0 þ
zα=2
~n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ

z2α=2
4

s
;

respectively, where B ¼ NP̂þEp
^

þ0 1� p
^

þ0

� �
, p

^

þ0 ¼ nþ0 þ ny0 þ 0:5z2α=2

� �
=~n1,

and ~n1 ¼ NP̂Eþ þ z2α=2.

(B) The Agresti–Coull interval

Following Tang et al. (2010), we consider the Agresti–Coull (AC) CIs for p0þ and pþ0. The lower
lac0þ
� �

and upper uac0þ
� �

limits of the 100 1� αð Þ% two-sided AC CI for p0þ are given by

lac0þ ¼ p
^

0þ � zα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p^ 0þ 1� p^ 0þ
� �

=~n0
q

and uac0þ ¼ p
^

0þ þ zα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p^ 0þ 1� p^ 0þ
� �

=~n0
q

;

respectively. Similarly, the lower lacþ0

� �
and upper uacþ0

� �
limits of the 100 1� αð Þ% two-sided AC CI

for pþ0 are respectively given by

lacþ0 ¼ p
^

þ0 � zα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p^þ0 1� p^þ0

� �
=~n1

q
and uacþ0 ¼ p

^

þ0 þ zα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p^þ0 1� p^þ0

� �
=~n1

q
:

2.2.5. Bootstrap-resampling-based CIs
Given the observed dataD ¼ n00; n01; n10; n11; nx0;f nx1; ny0; ny1g, we can obtain theMLEs p̂00, p̂01, p̂10,
and p̂11 of parameters p00, p01, p10, and p11 via Appendix A, and the naive MLEs P̂EE, P̂EI , and P̂IE of
parameters PEE, PEI , and PIE via P̂EE ¼ n=N, P̂EI ¼ nx=N, and P̂IE ¼ ny=N, respectively. Based on

p̂ij i; j ¼ 0; 1ð Þ, P̂EE, P̂EI , and P̂IE, we can generate a Bootstrap data set via the distribution:

n	00; n
	
01; n

	
10; n

	
11; n

	
x0; n

	
x1; n

	
y0; n

	
y1

� �
~ Multinomial (N; P̂EEp̂00, P̂EEp̂01, P̂EEp̂10, P̂EEp̂11, P̂EIp̂0þ, P̂EIp̂1þ,

P̂IEp̂þ0, P̂IEp̂þ1). For the generated Bootstrap sample (n	00,n
	
01,n

	
10,n

	
11,n

	
x0,n

	
x1,n

	
y0,n

	
y1), we first compute

the MLEs p̂	00, p̂
	
01, p̂

	
10, and p̂	11 of parameters p00, p01, p10, and p11 via Appendix A, and then obtain the

estimated value Δ̂	 of Δ via Δ̂	 ¼ p̂	0þ � p̂	þ0. Independently repeating the above process G times, we

obtain G Bootstrap estimates fΔ̂	
g : g ¼ 1; 2; . . . ;Gg. Let Δ̂	

ð1Þ; . . . ; Δ̂
	
ðGÞ denote the ordered values of

Δ̂	
gs. Based on these Δ̂	

gs, we can construct different Bootstrap-resampling-based CIs for Δ.

(A) Bootstrap-resampling-based percentile CI
Following Shao and Tu (1995, p. 132), the 100(1 − α)% Bootstrap-resampling-based percen-
tile CI for Δ is Δ̂	

ð½Gα=2�Þ; Δ̂
	
ð½Gð1�α=2Þ�Þ

� �
, where [a] represents the integer part of a.

(B) Bootstrap-resamping-based percentile-t CI
Let S ¼ ðvarðΔ̂ÞÞ1=2, and S* be the value of S calculated from the generated Bootstrap sample.
The Bootstrap distribution of Δ̂	 can be defined as FðxÞ ¼ Pr	fðΔ̂	 � Δ̂Þ=S	 � xg, where Pr* is
the conditional probability distribution given the original samples. Based on the generated G
Bootstrap samples, we can obtain ðΔ̂	 � Δ̂Þ=S	 and ft	g ¼ ðΔ̂	

g � Δ̂Þ=S	g : g ¼ 1; 2; . . . ;Gg,
where S	g is the gth Bootstrap replication of S. Following Efron and Tibshirani (1993), the 100

(1 − α)% Bootstrap-resampling-based percentile-t CI for Δ is given by
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Δ̂� χ1�α=2Ŝ; Δ̂� χα=2Ŝ
� �

, where Ŝ ¼ ðdVarðΔ̂ÞÞ1=2, χα=2 and χ1�α=2 are the 100α=2 and 100ð1�
α=2Þ percentiles of the empirical distribution of t	g , respectively.

3. Monte Carlo simulation studies

To investigate the performance of the proposed CI estimators of Δ, we computed their empirical
coverage probabilities (ECPs), empirical confidence widths (ECWs), and distal and mesial non-
coverage probabilities (DNCPs and MNCPs) via extensive Monte Carlo simulation studies. Here, the
ECP was defined as

ECP¼ 1
J

XJ
j¼1

I½Δ 2 fΔLðDðjÞÞ;ΔUðDðjÞÞg�;

where ΔLðDðjÞÞ and ΔUðDðjÞÞ were the lower and upper limits of CI for Δ based on the jth observed

sample DðjÞ ¼ nðjÞ00 ; n
ðjÞ
01 ; n

ðjÞ
10 ; n

ðjÞ
11 ; n

ðjÞ
x0 ; n

ðjÞ
x1 ; n

ðjÞ
y0 ; n

ðjÞ
y1

n o
, which was randomly generated from the follow-

ing multinomial distribution Mult(N; PEEp00, PEEp01, PEEp10, PEEp11, PEEp0+, PEEp1+, PIEp+0, PIEp+1),
and I½Δ 2 fΔL;ΔUg� was an indicator function of the event ½Δ 2 fΔL;ΔUg� which was 1 if
Δ 2 fΔL;ΔUg, and 0 otherwise. The ECM was defined as

ECW¼ 1
J

XJ
j¼1

ðΔUðDðjÞÞ � ΔLðDðjÞÞÞ:

When Δ > 0, the MNCPs and DNCPs (Newcombe, 1998b) can be interpreted as the left and right
non-coverage probabilities, respectively, which were defined by

MNCP ¼ 1
J

XJ
j¼1

IfΔ < ΔLðDðjÞÞg and DNCP¼ 1
J

XJ
j¼1

IfΔ > ΔUðDðjÞÞg;

respectively. When Δ < 0, the MNCPs and DNCPs can be interpreted as the right and left non-
coverage probabilities, respectively. The ratio of the MNCP to the non-coverage probability (NCP) was
defined as

RNCP¼MNCP
NCP

¼ MNCP
1:0� ECP

:

Following Newcombe (1998b) and Tang et al. (2010), an interval can be regarded as satisfactory if (a)
its ECP is close to the prespecified 95% confidence level, (b) it possesses shorter interval width, and
(c) its RNCP lies in the interval [0.4, 0.6], as too mesially located if its RNCP is less than 0.4, and too
distally if its RNCP is greater than 0.6.

In the first Monte Carlo simulation study, we considered the following parameter settings: (i) N =
20, 30, 50, 80, 100, 150; (ii) p0þ was taken to be 0.3, 0.4, 0.6, and 0.7; (iii) Δ varied from −0.1 to 0.1
with step size being 0.05; (iv) ρ was taken to be ρ = −0.1, 0, 0.1, where ρ was the correlation

coefficient between the paired binary outcomes defined by ρ ¼ ðp00 � p0þpþ0Þ=ðp0þp1þpþ0pþ1Þ1=2;
(v) (Pee, Pei, Pie) = (0.8, 0.1, 0.1), (0.7, 0.2, 0.1), (0.7, 0.1, 0.2), (0.7, 0.15, 0.15), (0.6, 0.2, 0.2); (vi) the
confidence level was set to be 1� α ¼ 95%. We generated a total of J = 10000 replications for each
combination of parameters. In computing Bootstrap-resampling CIs, G ¼ 5000 Bootstrap samples
were generated. For each configuration of parameters N, p0þ, Δ, ρ, PEE, PEI, PIE, the observed data
D jð Þ of the jth replication j ¼ 1; . . . ; 10000ð Þ were randomly generated from the multinomial
distribution Mult N; PEEp00; PEEp01; PEEp10; PEEp11; PEIp0þ; PEIp1þ;ð PIEpþ0; PIEpþ1Þ in which

pþ0 ¼ p0þ � Δ, p00 ¼ p0þpþ0 þ ρ p0þp1þpþ0pþ1ð Þ1=2, p01 ¼ p0þpþ1 � ρ p0þp1þpþ0pþ1ð Þ1=2,
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p10 ¼ p1þpþ0 � ρ p0þp1þpþ0pþ1ð Þ1=2, p11 ¼ p1þpþ1þ ρ p0þp1þpþ0pþ1ð Þ1=2, pþ1 ¼ 1� p0þ þ Δ, and
p1þ ¼ 1� p0þ. Based on the generated samples D jð Þ : j ¼ 1; . . . ; 10000

� �
, we calculated the 95%

coverage probabilities, expected widths, and ratios of MNCP to NCP (RNCPs) for the settings under
consideration. Figures 1–3 presented boxplots of ECPs, ECWs, and RNCPs of various CIs. Here,
each boxplot contained 4 (i.e., the number of marginal probabilityp0þ) ×5 (i.e., the number of Δ’s)
×3 (i.e., the number of ρ’s) ×5 (i.e., the number of (PEE, PEI , PIE)’s) = 300 data points.

To study the performance of our proposed CI estimators for Δ under the moderate/large
correlation coefficients, we conducted the second simulation study under the following parameter
settings: (i) N = 20, 30, 50, 80, 100, 150; (ii) p0þ ¼ 0:5; (iii) Δ ¼ �0:05, 0, 0.05; (iv) ρ ¼ �0:9, −0.6,
−0.5, −0.1, 0, 0.1, 0.5, 0.6, 0.9. Here, we did not consider other values of p0þ because some values of
p00, p01, p10, and p11 may be negative under p0þ�0:5. The results are presented in Table 3.

According to Figures 1–3 and Table 3, we obtained the following observations. For small sample
sizes (e.g., see Figure 1), we found that the CIs based on the score statistic (i.e., Ts), the Wald-type
statistic (i.e.,Tw1), and the hybrid method with the Wilson score method (i.e., MW) produced
deflated coverage probabilities (e.g., their median ECPs were less than 93%). Two bootstrap CIs
(i.e., B1 and B2) and the Wald-type CI (i.e., Tw2) behaved satisfactorily in the sense that their median
ECPs were close to the prespecified confidence level 95%. The CIs based on the likelihood ratio
method (i.e., Tl) and the hybrid method with the AC interval (i.e., M A) always guaranteed their
median ECPs at or above the prespecified confidence level. As sample size increased, median ECPs
of all CIs except for Tl, Ts, and Tw1 became closer to the prespecified confidence level. From Figure 2,
we observed that median RNCPs of all CIs except for Tl and Ts generally lied in the interval [0.4,
0.6]. This showed that our derived CIs generally exhibited appropriate symmetry. From Figure 3, we
observed that the CIs based on Tl and Ts generally yielded shorter median ECWs than other CIs.
However, this may be due to their deflation in ECPs. Generally, the larger the sample size the
narrower the confidence width. Also, the interval width increased as the proportion of missing
observations increased. From Table 3, we found that (i) all mean interval widths decreased as the
correlation (i.e., ρ) increased, (ii) there was no significant effect of ρ on mean ECPs for CIs of Δ
derived from Tw2, MW, MA, B1, and B2 methods, (iii) whilst there was a large effect of ρ on mean
ECPs for CIs of Δ derived from Tl, Ts, and Tw1 methods. For moderate values of p0þ, the mean
coverage probabilities were closer to the prespecified confidence level and the interval widths were
generally wider. Finally, we did not observe significant effect of Δ on mean coverage probabilities
and interval widths. In view of the above findings, we would recommend the hybrid CI with the

Table 3. Mean ECPs and ECWs of various confidence intervals with different ρ.

ρ Tl Ts Tw1 Tw2 MW MA B1 B2
ECP −0.9 0.9684 0.9668 0.9613 0.9532 0.9547 0.9617 0.9635 0.9434

−0.6 0.9693 0.9686 0.9581 0.9502 0.9556 0.9562 0.9607 0.9415
−0.5 0.9690 0.9695 0.9588 0.9509 0.9552 0.9557 0.9612 0.9423
−0.1 0.9671 0.9680 0.9565 0.9480 0.9524 0.9528 0.9578 0.9417
0 0.9663 0.9677 0.9558 0.9474 0.9516 0.9518 0.9574 0.9414
0.1 0.9667 0.9678 0.9569 0.9487 0.9527 0.9532 0.9569 0.9417
0.5 0.9422 0.9468 0.9646 0.9559 0.9569 0.9573 0.9616 0.9509
0.6 0.9115 0.9221 0.9675 0.9595 0.9563 0.9569 0.9628 0.9551
0.9 0.9035 0.9106 0.9955 0.9504 0.9517 0.9521 0.9657 0.9601

ECW −0.9 0.3724 0.3702 0.5187 0.5128 0.5100 0.5108 0.4883 0.4893
−0.6 0.3562 0.3542 0.4848 0.4793 0.4659 0.4665 0.4579 0.4589
−0.5 0.3494 0.3482 0.4727 0.4672 0.4516 0.4525 0.4470 0.4477
−0.1 0.3179 0.3181 0.4175 0.4118 0.3938 0.3942 0.3963 0.3970
0 0.3082 0.3091 0.4015 0.3957 0.3782 0.3787 0.3813 0.3818
0.1 0.2972 0.2993 0.3846 0.3785 0.3620 0.3625 0.3653 0.3659
0.5 0.2391 0.2466 0.3037 0.2954 0.2863 0.2867 0.2874 0.2874
0.6 0.2195 0.2295 0.2791 0.2695 0.2623 0.2628 0.2628 0.2623
0.9 0.1366 0.1568 0.1887 0.1633 0.1638 0.1641 0.1620 0.1599
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Figure 1. ECPs of various confidence interval estimates for different total sample size (N).
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Figure 2. RNCPs of various confidence interval estimates for different total sample size (N).
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Figure 3. ECWs of various confidence interval estimates for different total sample size (N).
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Wilson score interval (MW) and Tw2-CI as they (i) generally well controlled their coverage prob-
abilities around the pre-chosen confidence level; (ii) consistently yielded shorter interval widths
(even for small sample designs); and (iii) usually guaranteed their ratios of the MNCPs to the non-
coverage probabilities lying in [0.4, 0.6]. Particularly, if one would like a CI that yields the shortest
interval width, the hybrid CI with the AC interval is the optimal choice. If one would like a CI that
yields less discrepancy in the ratio of the MNCP to the NCP, the Tw2-CI is the desirable candidate.

4. An illustrative example

In this section, the neurological study of meningitis patients introduced in Section 1 is used to illustrate
the proposed methodologies. In this example, we are interested in CI construction of the difference
between the incidence rates of neurological complication before and after the standard treatment. Under
the previously given notation, we have n00 ¼ 8, n01 ¼ 8, n1þ þ nx � nx0, n11 ¼ 6, nx0 ¼ 2, ny0 ¼ 2,
nx ¼ 6, ny ¼ 2, and N = 33. We calculated MLEs of the incidence rates of neurological complication
before and after the standard treatment via the aforementioned EM algorithm, which were given by
p̂0þ ¼ 0:6504 and p̂þ0 ¼ 0:4821, respectively. Thus, an estimate of Δ was given by 0.1683. Various 95%
CIs for Δ ¼ p0þ � pþ0 are presented in Table 4. According to Table 4, we observed that the incidence
rates of neurological complication before and after the standard treatment were the same since all CIs
except for the score-based CI include 0. Since the CIs based on MA and Tw2 methods are the most
reliable according to our simulation studies, we have reason to believe that there is no significant
difference between the incidence rates of neurological complication before and after the standard
treatment at the 5% significance level.

5. Conclusion

In this article, we considered the problem of CI construction for the difference between two correlated
proportions in paired-comparison studies with missing observations. Under the assumption of MAR,
we derived the score test statistic and proposed eight CI estimators for the difference between two
correlated proportions in the presence of incomplete paired binary data based on the likelihood ratio
method, the score test method, the Wald-type test method, the hybrid method with the Wilson score
and AC intervals, and the Bootstrap-resampling method. Extensive simulation studies were conducted
to evaluate the performance of the proposed CIs with respect to their ECPs, empirical interval widths
(ECWs), and ratios of the MNCPs to the non-coverage probabilities (RNCPs). Based on our simulation
results, we found that the hybrid CI with the Wilson score interval (i.e., MW) and the Wlad-type CI
with the constrained MLE behave satisfactorily for small-to-moderate sample sizes in the sense that
their coverage probabilities could be well controlled around the prespecified nominal confidence level
and their RNCPs could be well controlled in the interval [0.4, 0.6]. Hence, they were recommended for
practical applications when the coverage probability is of interest. Unlike the asymptotic score and
likelihood ratio CIs, the proposed hybrid CIs possess analytical expressions and are thus recommended
due to their computational simplicity. In particular, the hybrid CI with the AC interval is highly
recommended in practice. We considered an analogue of the continuity correction of Newcombe
(1998c) for the hybrid interval and omitted the corresponding results since the improvement is not
significant.

Table 4. Various 95% CIs for p1þ � pþ1 based on the neurological data set.

Tl Ts Tw1 Tw2 MW MA B1 B2
Lower −0.0740 0.0301 −0.0653 −0.0779 −0.0908 −0.0905 −0.0761 −0.0856
Upper 0.3966 0.3927 0.4019 0.3946 0.3522 0.3518 0.3972 0.4275
Width 0.4706 0.3626 0.4672 0.4725 0.4430 0.4423 0.4733 0.5131
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In this article, it is assumed that the missing mechanism is MAR. When the missing mechanism
causing the incompleteness of the data depends on the treatment and the outcome, CI construction
for the difference between two correlated proportions is not trivial and is under investigation.

Appendix A: Maximum likelihood estimators of pijs

Let p̂ij be the maximum likelihood estimator (MLE) of pij for i, j = 0, 1. It follows from Campbell (1984) and Chang
(2009) that MLEs of p00, p01, p10, and p11 satisfy the following equations:

p̂00 ¼ n00 þ nx0p̂00= p̂00 þ p̂01ð Þ þ ny0p̂00= p̂00 þ p̂10ð Þ� �
=N;

p̂01 ¼ n01 þ nx0p̂01= p̂00 þ p̂01ð Þ þ ny1p̂01= p̂01 þ p̂11ð Þ� �
=N;

p̂10 ¼ n10 þ ny0p̂10= p̂00 þ p̂10ð Þ þ nx1p̂10= p̂10 þ p̂11ð Þ� �
=N;

p̂11 ¼ n11 þ ny1p̂11= p̂01 þ p̂11ð Þ þ nx1p̂11= p̂10 þ p̂11ð Þ� �
=N:

Thus, an EM algorithm for computing MLEs of pijs can refer to Campbell (1984, p. 314) and Chang (2009, p. 794).

Appendix B: Derivation of the score test statistic

Let β ¼ p0þ � pþ0 � Δ. The log-likelihood function of the observed data D can be rewritten as

l β; p00; p10ð Þ ¼ n00 log p00 þ n01 log βþ p10 þ Δð Þ þ n10 log p10
þ n11 log 1� p00 � 2p10 � β� Δð Þ þ nx0 log p00 þ βþ p10 þ Δð Þ
þ nx1 log 1� p00 � β� p10 � Δð Þ þ ny0 log p00 þ p10ð Þ
þ ny1 log 1� p00 � p10ð Þ þ c;

(A:1)

where c is the constant which is independent of parameters p00, p10, and β.
According to Equation (A.1), the score function with respect to β and the Fisher information matrix with respect to

β, p00, and p10 under β ¼ 0 are given by

@l
@β

jβ¼0 ¼
n01

p10 þ Δ
� n11
1� p00 � 2p10 � Δ

þ nx0
p00 þ p10 þ Δ

� nx1
1� p00 � p10 � Δ

;

and

I ¼
N01 þ N11 þ a N11 þ a N01 þ 2N11 þ a

N11 þ a N00 þ N11 þ aþ b 2N11 þ aþ b
N01 þ 2N11 þ a 2N11 þ aþ b N01 þ N10 þ 4N11 þ aþ b

0@ 1A; (A:2)

respectively, where Nij ¼ n=pij for i, j = 0,1, a ¼ nx= p0þ 1� p0þð Þf g, b ¼ ny= pþ0 1� pþ0ð Þf g, p01 ¼ p10 þ Δ, and
p11 ¼ 1� p00 � 2p10 � Δ. It follows from Equation (A.2) that the upper left element I11 of I−1 can be expressed as

I11 ¼ A2 þ aþ bð ÞA1

B1 þ A1abþ B2aþ B3b
;

where A1 ¼ N00 þ N10 þ N01 þ N11, A2 ¼ N00 þ N11ð Þ N01 þ N10ð Þ þ 4N00 þ N11, B1 ¼ N00N01N10 þ N00N01N11þ
N00N10N11 þ N01N10N11, B2 ¼ N00 þ N01ð Þ N10 þ N11ð Þ, B3 ¼ N00 þ N10ð Þ N01 þ N11ð Þ, and B4 ¼ A1. Hence, the
score statistic for testing H0 : p0þ � pþ0 ¼ Δ is given by

Ts Δð Þ ¼ @l=@βjβ¼0

� � ffiffiffiffiffiffi
I11

p
jp00¼~p00;p10¼~p10;p01¼~p01þΔ;p11¼~p11

¼ n01
p01

� n11
p11

þ nx0
p0þ

� nx1
p1þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ aþ bð ÞA1

B1 þ A1abþ B2aþ B3b

s
jp00¼~p00;p10¼~p10;p01¼~p10þΔ;p11¼~p11 :

Appendix C: Expectations and variances of p
^

1þ and p
^

þ1

It can be shown from properties of multinomial distribution that n1þ þ nx1jnþ nx~B nþ nx; p1þð Þ,
nþ1 þ ny1jnþ ny~B nþ ny; pþ1

� �
, nþ nxjN~B N;PEþð Þ and nþ nyjN~B N; PþEð Þ. By the delta method, we have E P̂�1

Eþ
� � �
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P�1
Eþ and E P̂�1

þE

� � � P�1
þE. Then, according to the properties of expectation and variance and the above given expres-

sions, we have

E p
^

1þ
� � ¼ Enþnx E p

^

1þ
nþ nx

� �� � ¼ Enþnx E
n1þ þ nx1
nþ nx

nþ nxj j
	 
� �

¼ p1þ; var p
^

1þ

n o
¼ varnþnx E p

^

1þ
nþ nx

� �� �þ Enþnx var p
^

1þ
nþ nx

� �� �
¼ varnþnx p1þf g þ Enþnx

p1þ 1� p1þð Þ
nþ nx

� �
¼ p1þ 1� p1þð ÞEnþnx

1
nþ nx

� �
¼ p1þ 1� p1þð Þ

N
Enþnx

1

P̂Eþ

� �
� p1þ 1� p1þð Þ

NPEþ
:

Similarly, we can show that E p
^

þ1

� � ¼ pþ1 and var p
^

þ1

� � � pþ1 1� pþ1ð Þ= NPþEð Þ.
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