
Automatic change-point detection in time
series via deep learning
Jie Li1 , Paul Fearnhead2 , Piotr Fryzlewicz1 and Tengyao Wang1

1Department of Statistics, London School of Economics and Political Science, London, UK
2Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
Address for correspondence: Jie Li, Department of Statistics, London School of Economics and Political Science,
Columbia House, Houghton Street, London WC2A 2AE, UK. Email: j.li196@lse.ac.uk

Read before The Royal Statistical Society at the Discussion Meeting on ‘Probabilistic and statistical aspects of machine
learning’ held at the Society’s 2023 annual conference in Harrogate on Wednesday, 6 September 2023, the President, Dr
Andrew Garrett, in the Chair.

Abstract
Detecting change points in data is challenging because of the range of possible types of change and types of
behaviour of data when there is no change. Statistically efficient methods for detecting a change will depend
on both of these features, and it can be difficult for a practitioner to develop an appropriate detection method
for their application of interest. We show how to automatically generate new offline detection methods based
on training a neural network. Our approach is motivated by many existing tests for the presence of a change
point being representable by a simple neural network, and thus a neural network trained with sufficient data
should have performance at least as good as these methods. We present theory that quantifies the error rate
for such an approach, and how it depends on the amount of training data. Empirical results show that, even
with limited training data, its performance is competitive with the standard cumulative sum (CUSUM)
based classifier for detecting a change in mean when the noise is independent and Gaussian, and can
substantially outperform it in the presence of auto-correlated or heavy-tailed noise. Our method also shows
strong results in detecting and localizing changes in activity based on accelerometer data.
Keywords: automatic statistician, classification, likelihood-free inference, neural networks, structural breaks,
supervised learning

Received: November 7, 2022. Revised: June 9, 2023. Accepted: July 25, 2023
© The Royal Statistical Society 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1 Introduction
Detecting change points in data sequences is of interest in many application areas such as bioinfor-
matics (Picard et al., 2005), climatology (Reeves et al., 2007), signal processing (Haynes et al., 2017),
and neuroscience (Oh et al., 2005). In this work, we are primarily concerned with the problem of
offline change-point detection, where the entire data is available to the analyst beforehand. Over
the past few decades, various methodologies have been extensively studied in this area, see Killick
et al. (2012), Jandhyala et al. (2013), Fryzlewicz (2014, 2023), Wang and Samworth (2018),
Truong et al. (2020) and references therein. Most research on change-point detection has concen-
trated on detecting and localizing different types of change, e.g. change in mean (Fryzlewicz,
2014; Killick et al., 2012), variance (Gao et al., 2019; Li et al., 2015), median (Fryzlewicz, 2021),
or slope (Baranowski et al., 2019; Fearnhead et al., 2019), amongst many others.

Many change-point detection methods are based upon modelling data when there is no
change and when there is a single change, and then constructing an appropriate test statistic
to detect the presence of a change (e.g. Fearnhead & Rigaill, 2020; James et al., 1987). The
form of a good test statistic will vary with our modelling assumptions and the type of change
we wish to detect. This can lead to difficulties in practice. As we use new models, it is unlikely

Journal of the Royal Statistical Society Series B:
Statistical Methodology, 2024, 86, 273–285
https://doi.org/10.1093/jrsssb/qkae004
Advance access publication 11 January 2024
Discussion Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/86/2/273/7517020 by guest on 30 Septem

ber 2024

https://orcid.org/0000-0001-8353-1322
https://orcid.org/0000-0002-9386-2341
mailto:j.li196@lse.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

that there will be a change-point detection method specifically designed for our modelling as-
sumptions. Furthermore, developing an appropriate method under a complex model may be
challenging, while in some applications an appropriate model for the data may be unclear
but we may have substantial historical data that shows what patterns of data to expect when
there is, or is not, a change.

In these scenarios, currently a practitioner would need to choose the existing change detection
method which seems the most appropriate for the type of data they have and the type of change
they wish to detect. To obtain reliable performance, they would then need to adapt its implemen-
tation, for example tuning the choice of threshold for detecting a change. Often, this would involve
applying the method to simulated or historical data.

To address the challenge of automatically developing new change detection methods, this paper
is motivated by the question: Can we construct new test statistics for detecting a change based only
on having labelled examples of change points? We show that this is indeed possible by training a
neural network to classify whether or not a dataset has a change of interest. This turns change-
point detection in a supervised learning problem.

A key motivation for our approach are results that show many common test statistics for detect-
ing changes, such as the CUSUM test for detecting a change in mean, can be represented by simple
neural networks. This means that with sufficient training data, the classifier learnt by such a neural
network will give performance at least as good as classifiers corresponding to these standard tests.
In scenarios where a standard test, such as CUSUM, is being applied but its modelling assumptions
do not hold, we can expect the classifier learnt by the neural network to outperform it.

There has been increasing recent interest in whether ideas from machine learning, and methods
for classification, can be used for change-point detection. Within computer science and engineering,
these include a number of methods designed for and that show promise on specific applications (e.g.
Ahmadzadeh, 2018; De Ryck et al., 2021; Gupta et al., 2022; Huang et al., 2023). Within statistics,
Londschien et al. (2022) and Lee et al. (2023) consider training a classifier as a way to estimate the
likelihood-ratio statistic for a change. However, these methods train the classifier in an unsupervised
way on the data being analysed, using the idea that a classifier would more easily distinguish be-
tween two segments of data if they are separated by a change point. Chang et al. (2019) use simu-
lated data to help tune a kernel-based change-detection method. Methods that use historical,
labelled data have been used to train the tuning parameters of change-point algorithms (e.g.
Hocking et al., 2015; Liehrmann et al., 2021). Also, neural networks have been employed to con-
struct similarity scores of new observations to learned pre-change distributions for online change-
point detection (Lee et al., 2023). However, we are unaware of any previous work using historical,
labelled data to develop offline change-point methods. As such, and for simplicity, we focus on the
most fundamental aspect, namely the problem of detecting a single change. Detecting and localizing
multiple changes is considered in Section 6 when analysing activity data. We remark that by viewing
the change-point detection problem as a classification instead of a testing problem, we aim to control
the overall mis-classification error rate (MER) instead of handling the Type I and Type II errors sep-
arately. In practice, asymmetric treatment of the two error types can be achieved by suitably re-
weighting mis-classification in the two directions in the training loss function.

The method we develop has parallels with likelihood-free inference methods (Beaumont, 2019;
Gourieroux et al., 1993) in that one application of our work is to use the ability to simulate from a
model so as to circumvent the need to analytically calculate likelihoods. However, the approach we
take is very different from standard likelihood-free methods which tend to use simulation to estimate
the likelihood function itself. By comparison, we directly target learning a function of the data that can
discriminate between instances that do or do not contain a change (though see Gutmann et al., 2018
for likelihood-free methods based on re-casting the likelihood as a classification problem).

For an introduction to the statistical aspects of neural network-based classification, albeit not
specifically in a change-point context, see Ripley (1994).

We now briefly introduce our notation. For any n ∈ Z+, we define [n] := {1, . . . , n}. We take all
vectors to be column vectors unless otherwise stated. Let 1n be the all-one vector of length n. Let
1{ · } represent the indicator function. The vertical symbol | · | represents the absolute value or car-
dinality of · depending on the context. For vector x = (x1, . . . , xn)⊤, we define its p-norm as
‖x‖p := (

n
i=1 |xi|

p)1/p, p ≥ 1; when p = ∞, define ‖x‖∞ := maxi|xi|. All proofs, as well as add-
itional simulations and real data analyses appear in the online supplementary material.

274 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

2 Neural networks
The initial focus of our work is on the binary classification problem for whether a change point
exists in a given time series. We will work with multi-layer neural networks with Rectified
Linear Unit (ReLU) activation functions and binary output. The multi-layer neural network con-
sists of an input layer, hidden layers, and an output layer, and can be represented by a directed
acyclic graph, see Figure 1. Let L ∈ Z+ represent the number of hidden layers and m =
(m1, . . . , mL)⊤ the vector of the hidden layer widths, i.e. mi is the number of nodes in the ith
hidden layer. For a neural network with L hidden layers, we use the convention that m0 = n
and mL+1 = 1. For any bias vector b = (b1, b2, . . . , br)

⊤ ∈ Rr, define the shifted activation function
σb : Rr → Rr:

σb((y1, . . . , yr)
⊤) = (σ(y1 − b1), . . . , σ(yr − br))

⊤,

where σ(x) = max(x, 0) is the ReLU activation function. The neural network can be mathematic-
ally represented by the composite function h : Rn → {0, 1} as

h(x) := σ∗λ WLσbL
WL−1σbL−1

· · ·W1σb1
W0x, (1)

where σ∗λ (x) = 1{x > λ}, λ > 0 and Wℓ ∈ Rmℓ+1×mℓ for ℓ ∈ {0, . . . , L} represent the weight matrices.
We define the function class HL,m to be the class of functions h(x) with L hidden layers and width
vector m.

The output layer in equation (1) employs the shifted heaviside function σ∗λ (x), which is used for
binary classification as the final activation function. This choice is guided by the fact that we use
the 0–1 loss, which focuses on the percentage of samples assigned to the correct class, a natural
performance criterion for binary classification. Besides its wide adoption in machine learning prac-
tice, another advantage of using the 0–1 loss is that it is possible to utilise the theory of the Vapnik–
Chervonenkis (VC) dimension (see, e.g. Shalev-Shwartz & Ben-David, 2014, Definition 6.5) to
bound the generalization error of a binary classifier equipped with this loss; indeed, this is the ap-
proach we take in this work. The relevant results regarding the VC dimension of neural network
classifiers are, e.g. in Bartlett et al. (2019). As in Schmidt-Hieber (2020), we work with the exact
minimizer of the empirical risk. In both binary or multi-class classification, it is possible to work
with other losses which make it computationally easier to minimise the corresponding risk, see,
e.g. Bos and Schmidt-Hieber (2022), who use a version of the cross-entropy loss. However, loss
functions different from the 0–1 loss make it impossible to use VC-dimension arguments to control
the generalization error, and more involved arguments, such as those using the covering number
(Bos & Schmidt-Hieber, 2022) need to be used instead. We do not pursue these generalizations in
the current work.

Figure 1. A neural network with two hidden layers and width vector m = (4, 4).

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2 275
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

3 CUSUM-based classifier and its generalizations are neural networks
3.1 Change in mean
We initially consider the case of a single change point with an unknown location τ ∈ [n − 1], n ≥ 2,
in the model

X = μ + ξ,

μ = (μL1{i ≤ τ} + μR1{i > τ})i∈[n] ∈ Rn,

where μL, μR are the unknown signal values before and after the change point; ξ ∼ Nn(0, In).
The CUSUM test is widely used to detect mean changes in univariate data. For the observation

x, the CUSUM transformation C : Rn → Rn−1 is defined as C(x) := (v⊤
1 x, . . . , v⊤

n−1x)⊤, where vi :=

(
���
n−i
in

1⊤
i , −

������
i

(n−i)n

1⊤

n−i)
⊤ for i ∈ [n − 1]. Here, for each i ∈ [n − 1], (v⊤

i x)2 is the log likelihood-ratio

statistic for testing a change at time i against the null of no change (e.g. Baranowski et al., 2019).
For a given threshold λ > 0, the classical CUSUM test for a change in the mean of the data is defined
as

hCUSUM
λ (x) = 1{‖C(x)‖∞ > λ}.

The following lemma shows that hCUSUM
λ (x) can be represented as a neural network.

Lemma 3.1 For any λ > 0, we have hCUSUM
λ (x) ∈ H1,2n−2.

The fact that the widely used CUSUM statistic can be viewed as a simple neural network has
far-reaching consequences: this means that given enough training data, a neural network architec-
ture that permits the CUSUM-based classifier as its special case cannot do worse than CUSUM in
classifying change-point vs. no-change-point signals. This serves as the main motivation for our
work, and a prelude to our next results.

3.2 Beyond the mean change model
We can generalise the simple change in mean model to allow for different types of change or for
non-independent noise. In this section, we consider change-point models that can be expressed as a
change in regression problem, where the model for data given a change at τ is of the form

X = Zβ + cτϕ + Γξ, (2)

where for some p ≥ 1, Z is an n × p matrix of covariates for the model with no change, cτ is an n × 1
vector of covariates specific to the change at τ, and the parameters β and ϕ are, respectively, a p × 1
vector and a scalar. The noise is defined in terms of an n × n matrix Γ and an n × 1 vector of in-
dependent standard normal random variables, ξ.

For example, the change in mean problem has p = 1, with Z a column vector of ones, and cτ
being a vector whose first τ entries are zeros, and the remaining entries are ones. In this formula-
tion, β is the pre-change mean and ϕ is the size of the change. The change in slope problem
(Fearnhead et al., 2019) has p = 2 with the columns of Z being a vector of ones, and a vector whose
ith entry is i; and cτ has ith entry that is max{0, i − τ}. In this formulation, β defines the pre-change
linear mean and ϕ the size of the change in slope. Choosing Γ to be proportional to the identity
matrix gives a model with independent, identically distributed noise; but other choices would al-
low for auto-correlation.

The following result is a generalization of Lemma 3.1, which shows that the likelihood-ratio test
for equation (2), viewed as a classifier, can be represented by our neural network.

Lemma 3.2 Consider the change-point model (2) with a possible change at τ ∈ [n − 1].
Assume further that Γ is invertible. Then there is an h∗ ∈ H1,2n−2 equivalent
to the likelihood-ratio test for testing ϕ = 0 against ϕ ≠ 0.

276 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

Importantly, this result shows that for this much wider class of change-point models, we can
replicate the likelihood-ratio-based classifier for change using a simple neural network.

Other types of changes can be handled by suitably pre-transforming the data. For instance,
squaring the input data would be helpful in detecting changes in the variance and if the data
followed an AR(1) structure, then changes in auto-correlation could be handled by including trans-
formations of the original input of the form (xtxt+1)t=1,...,n−1. On the other hand, even if such trans-
formations are not supplied as the input, a neural network of suitable depth is able to approximate
these transformations and consequently successfully detect the change (Schmidt-Hieber, 2020,
Lemma A.2). This is illustrated in Figure S3 of the online supplementary material, where we com-
pare the performance of neural network-based classifiers of various depths constructed with and
without using the transformed data as inputs.

4 Generalization error of neural network change-point classifiers
In Section 3, we showed that CUSUM and generalised CUSUM could be represented by a neural
network. Therefore, with a large enough amount of training data, a trained neural network clas-
sifier that included CUSUM, or generalised CUSUM, as a special case, would perform no worse
than it on unseen data. In this section, we provide generalization bounds for a neural network clas-
sifier for the change-in-mean problem, given a finite amount of training data. En route to this main
result, stated in Theorem 4.3, we provide generalization bounds for the CUSUM-based classifier,
in which the threshold has been chosen on a finite training dataset.

We write P(n, τ, μL, μR) for the distribution of the multivariate normal random vector
X ∼ Nn(μ, In), where μ := (μL1{i ≤ τ} + μR1{i > τ})i∈[n]. Define η := τ/n. Lemma 4.1 and
Corollary 4.1 control the mis-classification error of the CUSUM-based classifier.

Lemma 4.1 Fix ε ∈ (0, 1). Suppose X ∼ P(n, τ, μL, μR) for some τ ∈ Z+ and μL, μR ∈ R.

(a) If μL = μR, then P{‖C(X)‖∞ >
������������
2 log (n/ε)

} ≤ ε.

(b) If |μL − μR|
���������
η(1 − η)

>

���������������
8 log (n/ε)/n

, then P{‖C(X)‖∞ ≤

������������
2 log (n/ε)

}

≤ ε.
For any B > 0, define

Θ(B) := (τ, μL, μR) ∈ [n − 1] × R × R : |μL − μR|
���������
τ(n − τ)

/n ∈ {0} ∪ B, ∞

(
.

Here, |μL − μR|
���������
τ(n − τ)

/n = |μL − μR|

���������
η(1 − η)

can be interpreted as the signal-to-noise ratio

(SNR) of the mean change problem. Thus, Θ(B) is the parameter space of data distributions where
there is either no change or a single change point in mean whose SNR is at least B. The following
corollary controls the mis-classification risk of a CUSUM statistics-based classifier:

Corollary 4.1 Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw (τ, μL, μR) ∼
π0 and X ∼ P(n, τ, μL, μR), and define Y = 1{μL ≠ μR}. For λ = B

��
n
√
/2, the

classifier hCUSUM
λ satisfies

P(hCUSUM
λ (X) ≠ Y) ≤ ne−nB2/8.

Theorem 4.2 below, which is based on Corollary 4.1, Bartlett et al. (2019, Theorem 7) and
Mohri et al. (2012, Corollary 3.4), shows that the empirical risk minimizer in the neural network
class H1,2n−2 has good generalization properties over the class of change-point problems parame-
terised by Θ(B). Given training data (X(1), Y(1)), . . . , (X(N), Y(N)) and any h : Rn → {0, 1}, we de-
fine the empirical risk of h as

LN(h) :=
1
N

N

i=1

1{Y(i) ≠ h(X(i))}.

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2 277
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

Theorem 4.2 Fix B > 0 and let π0 be any prior distribution on Θ(B). We draw
(τ, μL, μR) ∼ π0, X ∼ P(n, τ, μL, μR), and set Y = 1{μL ≠ μR}. Suppose that
the training data D := ((X(1), Y(1)), . . . , (X (N), Y(N))) consist of independent
copies of (X, Y) and hERM := arg minh∈H1,2n−2

LN(h) is the empirical risk
minimizer. There exists a universal constant C > 0 such that for any
δ ∈ (0, 1), equation (3) holds with probability 1 − δ.

P(hERM(X) ≠ Y ∣ D) ≤ ne−nB2/8 + C

��������������������������������
n2 log (n) log (N) + log (1/δ)

N

. (3)

The theoretical results derived for the neural network-based classifier, here and below, all rely on
the fact that the training and test data are drawn from the same distribution. However, we observe
that in practice, even when the training and test sets have different error distributions, neural
network-based classifiers still provide accurate results on the test set; see our discussion of
Figure 2 in Section 5 for more details. The mis-classification error in equation (3) is bounded by
two terms. The first term represents the mis-classification error of CUSUM-based classifier, see
Corollary 4.1, and the second term depends on the complexity of the neural network class measured
in its VC dimension. Theorem 4.2 suggests that for training sample size N ≫ n2 log n, a well-trained
single hidden layer neural network with 2n − 2 hidden nodes would have comparable performance
to that of the CUSUM-based classifier. However, as we will see in Section 5, in practice, a much
smaller training sample size N is needed for the neural network to be competitive in the change-
point detection task. This is because the 2n − 2 hidden layer nodes in the neural network represen-
tation of hCUSUM

λ encode the components of the CUSUM transformation (± v⊤
t x : t ∈ [n − 1]),

which are highly correlated.
By suitably pruning the hidden layer nodes, we can show that a single hidden layer neural net-

work with O(log n) hidden nodes is able to represent a modified version of the CUSUM-based
classifier with essentially the same mis-classification error. More precisely, let Q := ⌊log2 (n/2)⌋
and write T0 := {2q : 0 ≤ q ≤ Q} ∪ {n − 2q : 0 ≤ q ≤ Q}. We can then define

(a) (b)

(c) (d)

Figure 2. Plot of the test set mis-classification error rate, computed on a test set of size Ntest = 30,000, against
training sample size N for detecting the existence of a change point on data series of length n = 100. We compare
the performance of the CUSUM test and neural networks from four function classes: H1,m(1) , H1,m(2) , H5,m(1)15

, and
H10,m(1)110

, where m(1) = 4⌊log2 (n)⌋ and m(2) = 2n − 2, respectively, under scenarios S1, S1 ′, S2, and S3 described in
Section 5. (a) Scenario S1 with ρt = 0. (b) Scenario S1 ′with ρt = 0.7. (c) Scenario S2 with ρt ∼ Unif([0, 1]). (d) Scenario
S3 with Cauchy noise.

278 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

hCUSUM∗
λ∗ (X) = 1l{max

t∈T0

|v⊤
t X| > λ∗}.

By the same argument as in Lemma 3.1, we can show that hCUSUM∗
λ∗ ∈ H1,4⌊log2 (n)⌋ for any λ∗ > 0.

The following theorem shows that high classification accuracy can be achieved under a weaker
training sample size condition compared to Theorem 4.2.

Theorem 4.3 Fix B > 0 and let the training data D be generated as in Theorem 4.2. Let
hERM := arg minh∈HL,m

LN(h) be the empirical risk minimizer for a neural

network with L ≥ 1 layers and m = (m1, . . . , mL)⊤ hidden layer widths.
If m1 ≥ 4⌊log2 (n)⌋ and mrmr+1 = O(n log n) for all r ∈ [L − 1], then there
exists a universal constant C > 0 such that for any δ ∈ (0, 1), equation (4)
holds with probability 1 − δ.

P(hERM(X) ≠ Y ∣ D) ≤ 2⌊log2 (n)⌋e−nB2/24

+ C

�������������������������������������

L2n log2 (Ln) log (N) + log (1/δ)
N

.

(4)

Theorem 4.3 generalises the single hidden layer neural network representation in Theorem 4.2
to multiple hidden layers. In practice, multiple hidden layers help to keep the MER low even when
N is small, see Section 5. Theorems 4.2 and 4.3 are examples of how to derive generalization errors
of a neural network-based classifier in the change-point detection task. The same workflow can be
employed in other types of changes, provided that suitable representation results of likelihood-
based tests in terms of neural networks (e.g. Lemma 3.2) can be obtained. In a general result of
this type, the generalization error of the neural network will again be bounded by a sum of the er-
ror of the likelihood-based classifier together with a term originating from the VC-dimension
bound of the complexity of the neural network architecture.

We further remark that for simplicity of discussion, we have focused our attention on data mod-
els where the noise vector ξ = X − EX has independent and identically distributed normal compo-
nents. However, since CUSUM-based tests are available for temporally correlated or sub-Weibull
data, with suitably adjusted test threshold values, the above theoretical results readily generalise to
such settings. See Theorems S4 and S6 in the online supplementary material for more details.

5 Numerical study
We now investigate empirically our approach of learning a change-point detection method by train-
ing a neural network. Motivated by the results from the previous section, we will fit a neural net-
work with a single layer and consider how varying the number of hidden layers and the amount
of training data affects performance. We will compare to a test based on the CUSUM statistic,
both for scenarios where the noise is independent and Gaussian, and for scenarios where there is
auto-correlation or heavy-tailed noise. The CUSUM test can be sensitive to the choice of threshold,
particularly when we do not have independent Gaussian noise, so we tune its threshold based on
training data.

When training the neural network, we first standardise the data onto [0, 1], i.e.
x̃i = ((xij − xmin

i)/(xmax
i − xmin

i)) j∈[n], where xmax
i := max jxij, xmin

i := minj xij. This makes the neural
network procedure invariant to either adding a constant to the data or scaling the data by a con-
stant, which are natural properties to require. We train the neural network by minimizing the
cross-entropy loss on the training data. We run training for 200 epochs with a batch size of 32
and a learning rate of 0.001 using the Adam optimizer (Kingma & Ba, 2015). These hyperpara-
meters are chosen based on a training dataset with cross-validation, more details can be found
in Section 2 of the online supplementary material.

We generate our data as follows. Given a sequence of length n, we draw τ ∼ Unif{2, . . . , n − 2},

set μL = 0 and draw μR|τ ∼ Unif([− 1.5b, − 0.5b] ∪ [0.5b, 1.5b]), where b :=
����������
8n log (20n)

τ(n−τ)

is chosen

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2 279
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

in line with Lemma 4.1 to ensure a good range of SNRs. We then generate
x1 = (μL1{t≤τ} + μR1{t>τ} + εt)t∈[n], with the noise (εt)t∈[n] following an AR(1) model with possibly
time-varying auto-correlation εt|ρt = ξ1 for t = 1 and ρtεt−1 + ξt for t ≥ 2, where (ξt)t∈[n] are inde-
pendent, possibly heavy-tailed noise. The auto-correlations ρt and innovations ξt are from one of
the four scenarios:

S1: n = 100, N ∈ {100, 200, . . . , 700}, ρt = 0, and ξt ∼ N(0, 1).
S1′: n = 100, N ∈ {100, 200, . . . , 700}, ρt = 0.7, and ξt ∼ N(0, 1).
S2: n = 100, N ∈ {100, 200, . . . , 1,000}, ρt ∼ Unif([0, 1]), and ξt ∼ N(0, 2).
S3: n = 100, N ∈ {100, 200, . . . , 1,000}, ρt = 0, and ξt ∼ Cauchy(0, 0.3).

The above procedure is then repeated N/2 times to generate independent sequences x1, . . . , xN/2

with a single change, and the associated labels are (y1, . . . , yN/2)⊤ = 1N/2. We then repeat
the process another N/2 times with μR = μL to generate sequences without changes
xN/2+1, . . . , xN with (yN/2+1, . . . , yN)⊤ = 0N/2. The data with and without change (xi, yi)i∈[N]
are combined and randomly shuffled to form the training data. The test data are generated in a
similar way, with a sample size Ntest = 30,000 and the slight modification that μR|τ ∼
Unif([− 1.75b, − 0.25b] ∪ [0.25b, 1.75b]) when a change occurs. We note that the test data is
drawn from the same distribution as the training set, though potentially having changes with
SNRs outside the range covered by the training set. We have also conducted robustness studies
to investigate the effect of training the neural networks on scenario S1 and test on S1′, S2, or
S3. Qualitatively similar results to Figure 2 have been obtained in this mis-specified setting (see
Figure S2 of the online supplementary material). We compare the performance of the
CUSUM-based classifier with the threshold cross-validated on the training data with neural net-
works from four function classes: H1,m(1) , H1,m(2) , H5,m(1)15

and H10,m(1)110
, where m(1) =

4⌊log2 (n)⌋ and m(2) = 2n − 2, respectively (cf. Theorem 4.3 and Lemma 3.1). Figure 2 shows
the test MER of the four procedures in the four scenarios S1, S1′, S2, and S3. We observe that
when data are generated with independent Gaussian noise (Figure 2a), the trained neural networks
with m(1) and m(2) single hidden layer nodes attain very similar test MER compared to the
CUSUM-based classifier. This is in line with our Theorem 4.3. More interestingly, when noise
has either auto-correlation (Figure 2b and c) or heavy-tailed distribution (Figure 2d), trained neur-
al networks with (L, m): (1, m(1)), (1, m(2)), (5, m(1)15), and (10, m(1)110) outperform the
CUSUM-based classifier, even after we have optimised the threshold choice of the latter. In add-
ition, as shown in Figure S1 in the online supplementary material, when the first two layers of the
network are set to carry out truncation, which can be seen as a composition of two ReLU opera-
tions, the resulting neural network outperforms the Wilcoxon statistics-based classifier (Dehling
et al., 2015), which is a standard benchmark for change-point detection in the presence of heavy-
tailed noise. Furthermore, from Figure 2, we see that increasing L can significantly reduce the aver-
age MER when N ≤ 200. Theoretically, as the number of layers L increases, the neural network is
better able to approximate the optimal decision boundary, but it becomes increasingly difficult to
train the weights due to issues such as vanishing gradients (He et al., 2016). A combination of these
considerations leads us to develop deep neural network architecture with residual connections for
detecting multiple changes and multiple change types in Section 6.

6 Detecting multiple changes and multiple change types—case study
From the previous section, we see that single and multiple hidden layer neural networks can re-
present CUSUM or generalised CUSUM tests and may perform better than likelihood-based
test statistics when the model is mis-specified. This prompted us to seek a general network archi-
tecture that can detect, and even classify, multiple types of change. Motivated by the similarities
between signal processing and image recognition, we employed a deep convolutional neural net-
work (CNN) (Yamashita et al., 2018) to learn the various features of multiple change types.
However, stacking more CNN layers cannot guarantee a better network because of vanishing gra-
dients in training (He et al., 2016). Therefore, we adopted the residual block structure (He et al.,
2016) for our neural network architecture. After experimenting with various architectures with

280 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

different numbers of residual blocks and fully connected layers on synthetic data, we arrived at a
network architecture with 21 residual blocks followed by a number of fully connected layers.
Figure S5 of the online supplementary material shows an overview of the architecture of the final
general-purpose deep neural network for change-point detection. The precise architecture and
training methodology of this network NN can be found in Section 3 of the online
supplementary material. Neural architecture search approaches (see Paaß & Giesselbach, 2023,
Section 2.4.3) offer principled ways of selecting neural architectures. Some of these approaches
could be made applicable in our setting.

We demonstrate the power of our general purpose change-point detection network in a
numerical study. We train the network on N = 10,000 instances of data sequences generated
from a mixture of no change point in mean or variance, change in mean only, change in variance
only, no-change in a non-zero slope, and change in slope only, and compare its classification per-
formance on a test set of size 2,500 against that of oracle likelihood-based classifiers (where we pre-
specify whether we are testing for change in mean, variance or slope) and adaptive likelihood-based
classifiers (where we combine likelihood-based tests using the Bayesian information criterion).
Details of the data-generating mechanism and classifiers can be found in Section 2 of the online
supplementary material. The classification accuracy of the three approaches in weak and strong
SNR settings is reported in Table 1. We see that the neural network-based approach achieves simi-
lar classification accuracy as adaptive likelihood-based method for weak SNR and higher classifi-
cation accuracy than the adaptive likelihood-based method for strong SNR. We would not expect
the neural network to outperform the oracle likelihood-based classifiers, as it has no knowledge of
the exact change type of each time series.

We now consider an application to detecting different types of change. The HASC (Human
Activity Sensing Consortium) project data contain motion sensor measurements during a sequence
of human activities, including ‘stay’, ‘walk’, ‘jog’, ‘skip’, ‘stair up’, and ‘stair down’. Complex
changes in sensor signals occur during transition from one activity to the next (see Figure 3).
We have 28 labels in HASC data, see Figure S6 of the online supplementary material. To agree
with the dimension of the output, we drop two dense layers ‘Dense(10)’ and ‘Dense(20)’ in
Figure S5 of the online supplementary material. The resulting network can be effectively applied
for change-point detection in sensory signals of human activities and can achieve high accuracy in
change-point classification tasks (Figure S8 of the online supplementary material).

Finally, we remark that our neural network-based change-point detector can be utilised to de-
tect multiple change points. Algorithm 1 outlines a general scheme for turning a change-point clas-
sifier into a location estimator, where we employ an idea similar to that of MOSUM (Eichinger &
Kirch, 2018) and repeatedly apply a classifier ψ to data from a sliding window of size n. Here, we
require ψ applied to each data segment X∗[i,i+n) to output both the class label Li = 0 or 1 if no change
or a change is predicted and the corresponding probability pi of having a change. In our particular

example, for each data segment X∗[i,i+n) of length n = 700, we define ψ(X∗[i,i+n)) = 0 if NN(X∗[i,i+n))

Table 1. Test classification accuracy of oracle likelihood-ratio-based method (LRoracle), adaptive likelihood-ratio
method (LRadapt), and our residual neural network (NN) classifier for set-ups with weak and strong signal-to-noise
ratios (SNRs)

Weak SNR Strong SNR

LRoracle LRadapt NN LRoracle LRadapt NN

Class 1 0.9787 0.9457 0.8062 0.9787 0.9341 0.9651

Class 2 0.8443 0.8164 0.8882 1.0000 0.7784 0.9860

Class 3 0.8350 0.8291 0.8585 0.9902 0.9902 0.9705

Class 4 0.9960 0.9453 0.8826 0.9980 0.9372 0.9312

Class 5 0.8729 0.8604 0.8353 0.9958 0.9917 0.9147

Accuracy 0.9056 0.8796 0.8660 0.9924 0.9260 0.9672

Note. Data are generated as a mixture of no change point in mean or variance (Class 1), change in mean only (Class 2),
change in variance only (Class 3), no-change in a non-zero slope (Class 4), and change in slope only (Class 5). We report
the true positive rate of each class and the accuracy in the last row.

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2 281
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

predicts a class label in {0, 4, 8, 12, 16, 22} (see Figure S6 in the online supplementary material)
and 1 otherwise. The thresholding parameter γ ∈ Z+ is chosen to be 1/2. Figure 4 illustrates the
result of multiple change-point detection in HASC data which provides evidence that the trained
neural network can detect both the multiple change types and multiple change points.

7 Discussion
Reliable testing for change points and estimating their locations, especially in the presence of mul-
tiple change points, other heterogeneities or untidy data, is typically a difficult problem for the ap-
plied statistician: they need to understand what type of change is sought, be able to characterise it
mathematically, find a satisfactory stochastic model for the data, formulate the appropriate statis-
tic, and fine-tune its parameters. This makes for a long workflow, with scope for errors at its every
stage.

In this paper, we showed how a carefully constructed statistical learning framework could auto-
matically take over some of those tasks and perform many of them ‘in one go’ when provided with
examples of labelled data. This turned the change-point detection problem into a supervised learn-
ing problem, and meant that the task of learning the appropriate test statistic and fine-tuning its
parameters was left to the ‘machine’ rather than the human user.

The crucial question was that of choosing an appropriate statistical learning framework. The key
factor behind our choice of neural networks was the discovery that the traditionally used
likelihood-ratio-based change-point detection statistics could be viewed as simple neural networks,
which (together with bounds on generalization errors beyond the training set) enabled us to formu-
late and prove the corresponding learning theory. However, there are a plethora of other excellent
predictive frameworks, such as XGBoost, LightGBM or Random Forests (Breiman, 2001; Chen &
Guestrin, 2016; Ke et al., 2017) and it would be of interest to establish whether and why they could
or could not provide a viable alternative to neural nets here. Furthermore, if we view the neural net-
work as emulating the likelihood-ratio test statistic, in that it will create test statistics for each pos-
sible location of a change and then amalgamate these into a single classifier, then we know that test
statistics for nearby changes will often be similar. This suggests that imposing some smoothness on
the weights of the neural network may be beneficial.

Figure 3. The sequence of accelerometer data in x, y, and z axes. From left to right, there are four activities: ‘stair
down’, ‘stay’, ‘stair up’, and ‘walk’, their change points are 990, 1,691, 2,733, respectively marked by black solid
lines. The grey rectangles represent the group of ‘no-change’ with labels: ‘stair down’, ‘stair up’, and ‘walk’. The red
rectangles represent the group of ‘one change’ with labels: ‘stair down →stay’, ‘stay →stair up’, and ‘stair
up →walk’.

Algorithm 1 Algorithm for change-point localization

Input: new data x∗1, . . . , x∗n∗ ∈ Rd, a trained classifier ψ : Rd×n → {0, 1}, γ > 0.

1 Form X∗[i,i+n) := (x∗i , . . . , xi+n−1) and compute Li ← ψ(X∗[i,i+n)) for all i = 1, . . . , n∗ − n + 1;

2 Compute L̅i ← n−1 i
j=i−n+1 Lj for i = n, . . . , n∗ − n + 1;

3 Let {[s1, e1], . . . , [sν̂, eν̂]} be the set of all maximal segments such that L̅i ≥ γ for all i ∈ [sr, er], r ∈ [ν̂];

4 Compute τ̂r ← arg maxi∈[sr ,er]L̅i for all r ∈ [ν̂];

Output: Estimated change-points τ̂1, . . . , τ̂ν̂

282 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

A further challenge is to develop methods that can adapt easily to input data of different sizes, with-
out having to train a different neural network for each input size. For changes in the structure of the
mean of the data, it may be possible to use ideas from functional data analysis so that we pre-process
the data, with some form of smoothing or imputation, to produce input data of the correct length.

If historical labelled examples of change points, perhaps provided by subject-matter experts
(who are not necessarily statisticians) are not available, one question of interest is whether simu-
lation can be used to obtain such labelled examples artificially, based on (say) a single dataset of
interest. Such simulated examples would need to come in two flavours: one batch ‘likely contain-
ing no change points’ and the other containing some artificially induced ones. How to simulate
reliably in this way is an important problem, which this paper does not solve. Indeed, we can en-
visage situations in which simulating in this way may be easier than solving the original unsuper-
vised change-point problem involving the single dataset at hand, with the bulk of the difficulty left
to the ‘machine’ at the learning stage when provided with the simulated data.

For situations where there is no historical data, but there are statistical models, one can obtain
training data by simulation from the model. In this case, training a neural network to detect a
change has similarities with likelihood-free inference methods in that it replaces analytic calcula-
tions associated with a model by the ability to simulate from the model. It is of interest whether
ideas from that area of statistics can be used here.

The main focus of our work was on testing for a single offline change point, and we treated lo-
cation estimation and extensions to multiple-change scenarios only superficially, via the heuristics
of testing-based estimation in Section 6. Similar extensions can be made to the online setting once
the neural network is trained, by retaining the final n observations in an online stream in memory
and applying our change-point classifier sequentially. One question of interest is whether and how
these heuristics can be made more rigorous: equipped with an offline classifier only, how can we
translate the theoretical guarantee of this offline classifier to that of the corresponding location es-
timator or online detection procedure? In addition to this approach, how else can a neural net-
work, however complex, be trained to estimate locations or detect change points sequentially?
In our view, these questions merit further work.

Acknowledgements
This study was presented at the Society’s 2023 Annual Conference held in Harrogate on
Wednesday, 6 September 2023, the President, Dr Andrew Garrett, in the Chair. This work was
supported by the High End Computing Cluster at Lancaster University. We highly appreciate
Yudong Chen’s contribution to debug our Python scripts and improve their readability.

Conflict of interest: We have no conflict of interest to disclose.

Funding
This work was supported by Engineering and Physical Sciences Research Council (EPSRC) grants
EP/V053590/1, EP/V053639/1, and EP/T02772X/1.

Figure 4. Change-point detection in HASC data. The red vertical lines represent the underlying change points, the
blue vertical lines represent the estimated change points. More details on multiple change-point detection can be
found in Section 3 of the online supplementary material.

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2 283
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data

Data availability
The data underlying this article are available at http://hasc.jp/hc2011/index-en.html. The com-
puter code and algorithm are available in Python Package: AutoCPD.

Supplementary material
Supplementary material is available online at Journal of the Royal Statistical Society: Series B.

References
Ahmadzadeh F. (2018). Change point detection with multivariate control charts by artificial neural network.

Journal of Advanced Manufacturing Technology, 97(9), 3179–3190. https://doi.org/10.1007/s00170-009-
2193-6

Baranowski R., Chen Y., & Fryzlewicz P. (2019). Narrowest-over-threshold detection of multiple change points
and change-point-like features. Journal of the Royal Statistical Society. Series B, 81(3), 649–672. https://doi.
org/10.1111/rssb.12322

Bartlett P. L., Harvey N., Liaw C., & Mehrabian A. (2019). Nearly-tight VC-dimension and pseudodimension
bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20(63), 1–17. https://
doi.org/10.48550/arXiv.1703.02930

Beaumont M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and its Application,
6(1), 379–403. https://doi.org/10.1146/statistics.2019.6.issue-1

Bos T., & Schmidt-Hieber J. (2022). Convergence rates of deep ReLU networks for multiclass classification.
Electronic Journal of Statistics, 16(1), 2724–2773. https://doi.org/10.1214/22-EJS2011

Breiman L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:
1010933404324

Chang, W. -C., Li, C. -L., Yang, Y., & Póczos, B. (2019). Kernel change-point detection with auxiliary deep gen-
erative models. In International Conference on Learning Representations, New Orleans, Louisiana, United
States. May 6–May 9, 2019.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). Association
for Computing Machinery, New York, NY, United States.

Dehling H., Fried R., Garcia I., & Wendler M. (2015). Change-point detection under dependence based on two-
sample U-statistics. In D. Dawson, R. Kulik, M. O. Haye, B. Szyszkowicz, & Y. Zhao (Eds.), Asymptotic laws
and methods in stochastics: A volume in honour of Miklós Csörgő (pp. 195–220). Springer.

De Ryck T., De Vos M., & Bertrand A. (2021). Change point detection in time series data using autoencoders with
a time-invariant representation. IEEE Transactions on Signal Processing, 69, 3513–3524. https://doi.org/10.
1109/TSP.2021.3087031

Eichinger B., & Kirch C. (2018). A MOSUM procedure for the estimation of multiple random change points.
Bernoulli, 24(1), 526–564. https://doi.org/10.3150/16-BEJ887

Fearnhead P., Maidstone R., & Letchford A. (2019). Detecting changes in slope with an l0 penalty. Journal of
Computational and Graphical Statistics, 28(2), 265–275. https://doi.org/10.1080/10618600.2018.1512868

Fearnhead P., & Rigaill G. (2020). Relating and comparing methods for detecting changes in mean. Stat, 9(1),
1–11. https://doi.org/10.1002/sta4.291

Fryzlewicz P. (2014). Wild binary segmentation for multiple change-point detection. Annals of Statistics, 42(6),
2243–2281. https://doi.org/10.1214/14-AOS1245

Fryzlewicz P. (2021). ‘Robust narrowest significance pursuit: Inference for multiple change-points in the median’,
arXiv, arXiv:2109.02487, preprint: not peer reviewed.

Fryzlewicz P. (2023). Narrowest significance pursuit: Inference for multiple change-points in linear models.
Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2023.2211733

Gao Z., Shang Z., Du P., & Robertson J. L. (2019). Variance change point detection under a smoothly-changing
mean trend with application to liver procurement. Journal of the American Statistical Association, 114(526),
773–781. https://doi.org/10.1080/01621459.2018.1442341

Gourieroux C., Monfort A., & Renault E. (1993). Indirect inference. Journal of Applied Economics, 8(S1),
S85–S118. https://doi.org/10.1002/(ISSN)1099-1255

Gupta M., Wadhvani R., & Rasool A. (2022). Real-time change-point detection: A deep neural network-based
adaptive approach for detecting changes in multivariate time series data. Expert Systems with Applications,
209, 1–16. https://doi.org/10.1016/j.eswa.2022.118260

Gutmann M. U., Dutta R., Kaski S., & Corander J. (2018). Likelihood-free inference via classification. Statistics
and Computing, 28(2), 411–425. https://doi.org/10.1007/s11222-017-9738-6

284 Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://hasc.jp/hc2011/index-en.html
https://pypi.org/project/autocpd/
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data
https://doi.org/10.1007/s00170-009-2193-6
https://doi.org/10.1007/s00170-009-2193-6
https://doi.org/10.1111/rssb.12322
https://doi.org/10.1111/rssb.12322
https://doi.org/10.48550/arXiv.1703.02930
https://doi.org/10.48550/arXiv.1703.02930
https://doi.org/10.1146/statistics.2019.6.issue-1
https://doi.org/10.1214/22-EJS2011
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TSP.2021.3087031
https://doi.org/10.1109/TSP.2021.3087031
https://doi.org/10.3150/16-BEJ887
https://doi.org/10.1080/10618600.2018.1512868
https://doi.org/10.1002/sta4.291
https://doi.org/10.1214/14-AOS1245
https://doi.org/10.1080/01621459.2023.2211733
https://doi.org/10.1080/01621459.2018.1442341
https://doi.org/10.1002/(ISSN)1099-1255
https://doi.org/10.1016/j.eswa.2022.118260
https://doi.org/10.1007/s11222-017-9738-6

Haynes K., Eckley I. A., & Fearnhead P. (2017). Computationally efficient changepoint detection for a range of
penalties. Journal of Computational and Graphical Statistics, 26(1), 134–143. https://doi.org/10.1080/
10618600.2015.1116445

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). IEEE.

Hocking T., Rigaill G., & Bourque G. (2015). PeakSeg: Constrained optimal segmentation and supervised pen-
alty learning for peak detection in count data. In International Conference on Machine Learning (pp. 324–
332). PMLR.

Huang, T. -J., Zhou, Q. -L., Ye, H. -J., & Zhan, D. -C. (2023). Change point detection via synthetic signals. In 8th
Workshop on Advanced Analytics and Learning on Temporal Data (pp. 25–35). AALTD 2023, Turin, Italy,
September 18–22, 2023, Revised Selected Papers.

James B., James K. L., & Siegmund D. (1987). Tests for a change-point. Biometrika, 74(1), 71–83. https://doi.org/
10.1093/biomet/74.1.71

Jandhyala V., Fotopoulos S., MacNeill I., & Liu P. (2013). Inference for single and multiple change-points in time
series. Journal of Time Series Analysis, 34(4), 423–446. https://doi.org/10.1111/jtsa.12035

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. -Y. (2017). LightGBM: A highly
efficient gradient boosting decision tree. In NIPS’17: Proceedings of the 31st International Conference on
Neural Information Processing Systems (pp. 3149–3157). Curran Associates Inc., 57 Morehouse Lane,
Red Hook, NY, United States, December 2017.

Killick R., Fearnhead P., & Eckley I. A. (2012). Optimal detection of changepoints with a linear computational
cost. Journal of the American Statistical Association, 107(500), 1590–1598. https://doi.org/10.1080/
01621459.2012.737745

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio & Y. LeCun (Eds.), 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015,
Conference Track Proceedings (pp. 1–15).

Lee J., Xie Y., & Cheng X. (2023). Training neural networks for sequential change-point detection. In IEEE
ICASSP 2023 (pp. 1–5). IEEE.

Li F., Tian Z., Xiao Y., & Chen Z. (2015). Variance change-point detection in panel data models. Economics
Letters, 126, 140–143. https://doi.org/10.1016/j.econlet.2014.12.005

Liehrmann A., Rigaill G., & Hocking T. D. (2021). Increased peak detection accuracy in over-dispersed ChIP-seq
data with supervised segmentation models. BMC Bioinformatics, 22(1), 1–18. https://doi.org/10.1186/
s12859-021-04221-5

Londschien M., Bühlmann P., & Kovács S. (2022). ‘Random forests for change point detection’, arXiv,
arXiv:2205.04997, preprint: not peer reviewed.

Mohri M., Rostamizadeh A., & Talwalkar A. (2012). Foundations of machine learning. Adaptive computation
and machine learning series. MIT Press.

Oh K. J., Moon M. S., & Kim T. Y. (2005). Variance change point detection via artificial neural networks for data
separation. Neurocomputing, 68, 239–250. https://doi.org/10.1016/j.neucom.2005.05.005

Paaß G., & Giesselbach S. (2023). Foundation models for natural language processing: Pre-trained language
models integrating media. Artificial intelligence: Foundations, Theory, and Algorithms. Springer
International Publishing.

Picard F., Robin S., Lavielle M., Vaisse C., & Daudin J.-J. (2005). A statistical approach for array CGH data ana-
lysis. BMC Bioinformatics, 6(1), 27. https://doi.org/10.1186/1471-2105-6-27

Reeves J., Chen J., Wang X. L., Lund R., & Lu Q. Q. (2007). A review and comparison of changepoint detection
techniques for climate data. Journal of Applied Meteorology and Climatology, 46(6), 900–915. https://doi.
org/10.1175/JAM2493.1

Ripley B. D. (1994). Neural networks and related methods for classification. Journal of the Royal Statistical
Society Series B, 56(3), 409–456. https://doi.org/10.1111/j.2517-6161.1994.tb01990.x

Schmidt-Hieber J. (2020). Nonparametric regression using deep neural networks with ReLU activation function.
Annals of Statistics, 48(4), 1875–1897. https://doi.org/10.1214/19-AOS1875

Shalev-Shwartz S., & Ben-David S. (2014). Understanding machine learning: From theory to algorithms.
Cambridge University Press.

Truong C., Oudre L., & Vayatis N. (2020). Selective review of offline change point detection methods. Signal
Processing, 167, 107299. https://doi.org/10.1016/j.sigpro.2019.107299

Wang T., & Samworth R. J. (2018). High dimensional change point estimation via sparse projection. Journal of
the Royal Statistical Society. Series B, 80(1), 57–83. https://doi.org/10.1111/rssb.12243

Yamashita R., Nishio M., Do R. K. G., & Togashi K. (2018). Convolutional neural networks: An
overview and application in radiology. Insights Into Imaging, 9(4), 611–629. https://doi.org/10.1007/
s13244-018-0639-9

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 2 285
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

https://doi.org/10.1080/10618600.2015.1116445
https://doi.org/10.1080/10618600.2015.1116445
https://doi.org/10.1093/biomet/74.1.71
https://doi.org/10.1093/biomet/74.1.71
https://doi.org/10.1111/jtsa.12035
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1016/j.econlet.2014.12.005
https://doi.org/10.1186/s12859-021-04221-5
https://doi.org/10.1186/s12859-021-04221-5
https://doi.org/10.1016/j.neucom.2005.05.005
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1175/JAM2493.1
https://doi.org/10.1175/JAM2493.1
https://doi.org/10.1111/j.2517-6161.1994.tb01990.x
https://doi.org/10.1214/19-AOS1875
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1111/rssb.12243
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9

	Automatic change-point detection in time series via deep learning
	Acknowledgements
	Conflict of interest
	References

