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Abstract
Detecting change points in data is challenging because of the range of possible types of change and types of 
behaviour of data when there is no change. Statistically efficient methods for detecting a change will depend 
on both of these features, and it can be difficult for a practitioner to develop an appropriate detection method 
for their application of interest. We show how to automatically generate new offline detection methods based 
on training a neural network. Our approach is motivated by many existing tests for the presence of a change 
point being representable by a simple neural network, and thus a neural network trained with sufficient data 
should have performance at least as good as these methods. We present theory that quantifies the error rate 
for such an approach, and how it depends on the amount of training data. Empirical results show that, even 
with limited training data, its performance is competitive with the standard cumulative sum (CUSUM) 
based classifier for detecting a change in mean when the noise is independent and Gaussian, and can 
substantially outperform it in the presence of auto-correlated or heavy-tailed noise. Our method also shows 
strong results in detecting and localizing changes in activity based on accelerometer data.
Keywords: automatic statistician, classification, likelihood-free inference, neural networks, structural breaks, 
supervised learning
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1 Introduction
Detecting change points in data sequences is of interest in many application areas such as bioinfor-
matics (Picard et al., 2005), climatology (Reeves et al., 2007), signal processing (Haynes et al., 2017), 
and neuroscience (Oh et al., 2005). In this work, we are primarily concerned with the problem of 
offline change-point detection, where the entire data is available to the analyst beforehand. Over 
the past few decades, various methodologies have been extensively studied in this area, see Killick 
et al. (2012), Jandhyala et al. (2013), Fryzlewicz (2014, 2023), Wang and Samworth (2018), 
Truong et al. (2020) and references therein. Most research on change-point detection has concen-
trated on detecting and localizing different types of change, e.g. change in mean (Fryzlewicz, 
2014; Killick et al., 2012), variance (Gao et al., 2019; Li et al., 2015), median (Fryzlewicz, 2021), 
or slope (Baranowski et al., 2019; Fearnhead et al., 2019), amongst many others.

Many change-point detection methods are based upon modelling data when there is no 
change and when there is a single change, and then constructing an appropriate test statistic 
to detect the presence of a change (e.g. Fearnhead & Rigaill, 2020; James et al., 1987). The 
form of a good test statistic will vary with our modelling assumptions and the type of change 
we wish to detect. This can lead to difficulties in practice. As we use new models, it is unlikely 
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that there will be a change-point detection method specifically designed for our modelling as-
sumptions. Furthermore, developing an appropriate method under a complex model may be 
challenging, while in some applications an appropriate model for the data may be unclear 
but we may have substantial historical data that shows what patterns of data to expect when 
there is, or is not, a change.

In these scenarios, currently a practitioner would need to choose the existing change detection 
method which seems the most appropriate for the type of data they have and the type of change 
they wish to detect. To obtain reliable performance, they would then need to adapt its implemen-
tation, for example tuning the choice of threshold for detecting a change. Often, this would involve 
applying the method to simulated or historical data.

To address the challenge of automatically developing new change detection methods, this paper 
is motivated by the question: Can we construct new test statistics for detecting a change based only 
on having labelled examples of change points? We show that this is indeed possible by training a 
neural network to classify whether or not a dataset has a change of interest. This turns change- 
point detection in a supervised learning problem.

A key motivation for our approach are results that show many common test statistics for detect-
ing changes, such as the CUSUM test for detecting a change in mean, can be represented by simple 
neural networks. This means that with sufficient training data, the classifier learnt by such a neural 
network will give performance at least as good as classifiers corresponding to these standard tests. 
In scenarios where a standard test, such as CUSUM, is being applied but its modelling assumptions 
do not hold, we can expect the classifier learnt by the neural network to outperform it.

There has been increasing recent interest in whether ideas from machine learning, and methods 
for classification, can be used for change-point detection. Within computer science and engineering, 
these include a number of methods designed for and that show promise on specific applications (e.g. 
Ahmadzadeh, 2018; De Ryck et al., 2021; Gupta et al., 2022; Huang et al., 2023). Within statistics, 
Londschien et al. (2022) and Lee et al. (2023) consider training a classifier as a way to estimate the 
likelihood-ratio statistic for a change. However, these methods train the classifier in an unsupervised 
way on the data being analysed, using the idea that a classifier would more easily distinguish be-
tween two segments of data if they are separated by a change point. Chang et al. (2019) use simu-
lated data to help tune a kernel-based change-detection method. Methods that use historical, 
labelled data have been used to train the tuning parameters of change-point algorithms (e.g. 
Hocking et al., 2015; Liehrmann et al., 2021). Also, neural networks have been employed to con-
struct similarity scores of new observations to learned pre-change distributions for online change- 
point detection (Lee et al., 2023). However, we are unaware of any previous work using historical, 
labelled data to develop offline change-point methods. As such, and for simplicity, we focus on the 
most fundamental aspect, namely the problem of detecting a single change. Detecting and localizing 
multiple changes is considered in Section 6 when analysing activity data. We remark that by viewing 
the change-point detection problem as a classification instead of a testing problem, we aim to control 
the overall mis-classification error rate (MER) instead of handling the Type I and Type II errors sep-
arately. In practice, asymmetric treatment of the two error types can be achieved by suitably re- 
weighting mis-classification in the two directions in the training loss function.

The method we develop has parallels with likelihood-free inference methods (Beaumont, 2019; 
Gourieroux et al., 1993) in that one application of our work is to use the ability to simulate from a 
model so as to circumvent the need to analytically calculate likelihoods. However, the approach we 
take is very different from standard likelihood-free methods which tend to use simulation to estimate 
the likelihood function itself. By comparison, we directly target learning a function of the data that can 
discriminate between instances that do or do not contain a change (though see Gutmann et al., 2018
for likelihood-free methods based on re-casting the likelihood as a classification problem).

For an introduction to the statistical aspects of neural network-based classification, albeit not 
specifically in a change-point context, see Ripley (1994).

We now briefly introduce our notation. For any n ∈ Z+, we define [n] := {1, . . . , n}. We take all 
vectors to be column vectors unless otherwise stated. Let 1n be the all-one vector of length n. Let 
1{ · } represent the indicator function. The vertical symbol | · | represents the absolute value or car-
dinality of · depending on the context. For vector x = (x1, . . . , xn)⊤, we define its p-norm as 
‖x‖p := (

n
i=1 |xi|

p)1/p, p ≥ 1; when p = ∞, define ‖x‖∞ := maxi|xi|. All proofs, as well as add-
itional simulations and real data analyses appear in the online supplementary material.
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2 Neural networks
The initial focus of our work is on the binary classification problem for whether a change point 
exists in a given time series. We will work with multi-layer neural networks with Rectified 
Linear Unit (ReLU) activation functions and binary output. The multi-layer neural network con-
sists of an input layer, hidden layers, and an output layer, and can be represented by a directed 
acyclic graph, see Figure 1. Let L ∈ Z+ represent the number of hidden layers and m = 
(m1, . . . , mL)⊤ the vector of the hidden layer widths, i.e. mi is the number of nodes in the ith 
hidden layer. For a neural network with L hidden layers, we use the convention that m0 = n 
and mL+1 = 1. For any bias vector b = (b1, b2, . . . , br)

⊤ ∈ Rr, define the shifted activation function 
σb : Rr → Rr:

σb((y1, . . . , yr)
⊤) = (σ(y1 − b1), . . . , σ(yr − br))

⊤, 

where σ(x) = max(x, 0) is the ReLU activation function. The neural network can be mathematic-
ally represented by the composite function h : Rn → {0, 1} as

h(x) := σ∗λ WLσbL
WL−1σbL−1

· · ·W1σb1
W0x, (1) 

where σ∗λ (x) = 1{x > λ}, λ > 0 and Wℓ ∈ Rmℓ+1×mℓ for ℓ ∈ {0, . . . , L} represent the weight matrices. 
We define the function class HL,m to be the class of functions h(x) with L hidden layers and width 
vector m.

The output layer in equation (1) employs the shifted heaviside function σ∗λ (x), which is used for 
binary classification as the final activation function. This choice is guided by the fact that we use 
the 0–1 loss, which focuses on the percentage of samples assigned to the correct class, a natural 
performance criterion for binary classification. Besides its wide adoption in machine learning prac-
tice, another advantage of using the 0–1 loss is that it is possible to utilise the theory of the Vapnik– 
Chervonenkis (VC) dimension (see, e.g. Shalev-Shwartz & Ben-David, 2014, Definition 6.5) to 
bound the generalization error of a binary classifier equipped with this loss; indeed, this is the ap-
proach we take in this work. The relevant results regarding the VC dimension of neural network 
classifiers are, e.g. in Bartlett et al. (2019). As in Schmidt-Hieber (2020), we work with the exact 
minimizer of the empirical risk. In both binary or multi-class classification, it is possible to work 
with other losses which make it computationally easier to minimise the corresponding risk, see, 
e.g. Bos and Schmidt-Hieber (2022), who use a version of the cross-entropy loss. However, loss 
functions different from the 0–1 loss make it impossible to use VC-dimension arguments to control 
the generalization error, and more involved arguments, such as those using the covering number 
(Bos & Schmidt-Hieber, 2022) need to be used instead. We do not pursue these generalizations in 
the current work.

Figure 1. A neural network with two hidden layers and width vector m = (4, 4).
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3 CUSUM-based classifier and its generalizations are neural networks
3.1 Change in mean
We initially consider the case of a single change point with an unknown location τ ∈ [n − 1], n ≥ 2, 
in the model

X = μ + ξ,

μ = (μL1{i ≤ τ} + μR1{i > τ})i∈[n] ∈ Rn, 

where μL, μR are the unknown signal values before and after the change point; ξ ∼ Nn(0, In). 
The CUSUM test is widely used to detect mean changes in univariate data. For the observation 

x, the CUSUM transformation C : Rn → Rn−1 is defined as C(x) := (v⊤
1 x, . . . , v⊤

n−1x)⊤, where vi := 

(
���
n−i
in



1⊤
i , −

������
i

(n−i)n


1⊤

n−i)
⊤ for i ∈ [n − 1]. Here, for each i ∈ [n − 1], (v⊤

i x)2 is the log likelihood-ratio 

statistic for testing a change at time i against the null of no change (e.g. Baranowski et al., 2019). 
For a given threshold λ > 0, the classical CUSUM test for a change in the mean of the data is defined 
as

hCUSUM
λ (x) = 1{‖C(x)‖∞ > λ}.

The following lemma shows that hCUSUM
λ (x) can be represented as a neural network.

Lemma 3.1 For any λ > 0, we have hCUSUM
λ (x) ∈ H1,2n−2.

The fact that the widely used CUSUM statistic can be viewed as a simple neural network has 
far-reaching consequences: this means that given enough training data, a neural network architec-
ture that permits the CUSUM-based classifier as its special case cannot do worse than CUSUM in 
classifying change-point vs. no-change-point signals. This serves as the main motivation for our 
work, and a prelude to our next results.

3.2 Beyond the mean change model
We can generalise the simple change in mean model to allow for different types of change or for 
non-independent noise. In this section, we consider change-point models that can be expressed as a 
change in regression problem, where the model for data given a change at τ is of the form

X = Zβ + cτϕ + Γξ, (2) 

where for some p ≥ 1, Z is an n × p matrix of covariates for the model with no change, cτ is an n × 1 
vector of covariates specific to the change at τ, and the parameters β and ϕ are, respectively, a p × 1 
vector and a scalar. The noise is defined in terms of an n × n matrix Γ and an n × 1 vector of in-
dependent standard normal random variables, ξ.

For example, the change in mean problem has p = 1, with Z a column vector of ones, and cτ 
being a vector whose first τ entries are zeros, and the remaining entries are ones. In this formula-
tion, β is the pre-change mean and ϕ is the size of the change. The change in slope problem 
(Fearnhead et al., 2019) has p = 2 with the columns of Z being a vector of ones, and a vector whose 
ith entry is i; and cτ has ith entry that is max{0, i − τ}. In this formulation, β defines the pre-change 
linear mean and ϕ the size of the change in slope. Choosing Γ to be proportional to the identity 
matrix gives a model with independent, identically distributed noise; but other choices would al-
low for auto-correlation.

The following result is a generalization of Lemma 3.1, which shows that the likelihood-ratio test 
for equation (2), viewed as a classifier, can be represented by our neural network.

Lemma 3.2 Consider the change-point model (2) with a possible change at τ ∈ [n − 1]. 
Assume further that Γ is invertible. Then there is an h∗ ∈ H1,2n−2 equivalent 
to the likelihood-ratio test for testing ϕ = 0 against ϕ ≠ 0.
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Importantly, this result shows that for this much wider class of change-point models, we can 
replicate the likelihood-ratio-based classifier for change using a simple neural network.

Other types of changes can be handled by suitably pre-transforming the data. For instance, 
squaring the input data would be helpful in detecting changes in the variance and if the data 
followed an AR(1) structure, then changes in auto-correlation could be handled by including trans-
formations of the original input of the form (xtxt+1)t=1,...,n−1. On the other hand, even if such trans-
formations are not supplied as the input, a neural network of suitable depth is able to approximate 
these transformations and consequently successfully detect the change (Schmidt-Hieber, 2020, 
Lemma A.2). This is illustrated in Figure S3 of the online supplementary material, where we com-
pare the performance of neural network-based classifiers of various depths constructed with and 
without using the transformed data as inputs.

4 Generalization error of neural network change-point classifiers
In Section 3, we showed that CUSUM and generalised CUSUM could be represented by a neural 
network. Therefore, with a large enough amount of training data, a trained neural network clas-
sifier that included CUSUM, or generalised CUSUM, as a special case, would perform no worse 
than it on unseen data. In this section, we provide generalization bounds for a neural network clas-
sifier for the change-in-mean problem, given a finite amount of training data. En route to this main 
result, stated in Theorem 4.3, we provide generalization bounds for the CUSUM-based classifier, 
in which the threshold has been chosen on a finite training dataset.

We write P(n, τ, μL, μR) for the distribution of the multivariate normal random vector 
X ∼ Nn(μ, In), where μ := (μL1{i ≤ τ} + μR1{i > τ})i∈[n]. Define η := τ/n. Lemma 4.1 and 
Corollary 4.1 control the mis-classification error of the CUSUM-based classifier.

Lemma 4.1 Fix ε ∈ (0, 1). Suppose X ∼ P(n, τ, μL, μR) for some τ ∈ Z+ and μL, μR ∈ R. 

(a) If μL = μR, then P{‖C(X)‖∞ >
������������
2 log (n/ε)


} ≤ ε.

(b) If |μL − μR|
���������
η(1 − η)


>

���������������
8 log (n/ε)/n


, then P{‖C(X)‖∞ ≤

������������
2 log (n/ε)


} 

≤ ε.
For any B > 0, define

Θ(B) := (τ, μL, μR) ∈ [n − 1] × R × R : |μL − μR|
���������
τ(n − τ)


/n ∈ {0} ∪ B, ∞

(  
.

Here, |μL − μR|
���������
τ(n − τ)


/n = |μL − μR|

���������
η(1 − η)


can be interpreted as the signal-to-noise ratio 

(SNR) of the mean change problem. Thus, Θ(B) is the parameter space of data distributions where 
there is either no change or a single change point in mean whose SNR is at least B. The following 
corollary controls the mis-classification risk of a CUSUM statistics-based classifier:

Corollary 4.1 Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw (τ, μL, μR) ∼ 
π0 and X ∼ P(n, τ, μL, μR), and define Y = 1{μL ≠ μR}. For λ = B

��
n
√
/2, the 

classifier hCUSUM
λ satisfies

P(hCUSUM
λ (X) ≠ Y) ≤ ne−nB2/8.

Theorem 4.2 below, which is based on Corollary 4.1, Bartlett et al. (2019, Theorem 7) and 
Mohri et al. (2012, Corollary 3.4), shows that the empirical risk minimizer in the neural network 
class H1,2n−2 has good generalization properties over the class of change-point problems parame-
terised by Θ(B). Given training data (X(1), Y(1)), . . . , (X(N), Y(N)) and any h : Rn → {0, 1}, we de-
fine the empirical risk of h as

LN(h) :=
1
N

N

i=1

1{Y(i) ≠ h(X(i))}.
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Theorem 4.2 Fix B > 0 and let π0 be any prior distribution on Θ(B). We draw 
(τ, μL, μR) ∼ π0, X ∼ P(n, τ, μL, μR), and set Y = 1{μL ≠ μR}. Suppose that 
the training data D := ((X(1), Y(1)), . . . , (X (N), Y(N))) consist of independent 
copies of (X, Y) and hERM := arg minh∈H1,2n−2

LN(h) is the empirical risk 
minimizer. There exists a universal constant C > 0 such that for any 
δ ∈ (0, 1), equation (3) holds with probability 1 − δ.

P(hERM(X) ≠ Y ∣ D) ≤ ne−nB2/8 + C

��������������������������������
n2 log (n) log (N) + log (1/δ)

N



. (3) 

The theoretical results derived for the neural network-based classifier, here and below, all rely on 
the fact that the training and test data are drawn from the same distribution. However, we observe 
that in practice, even when the training and test sets have different error distributions, neural 
network-based classifiers still provide accurate results on the test set; see our discussion of 
Figure 2 in Section 5 for more details. The mis-classification error in equation (3) is bounded by 
two terms. The first term represents the mis-classification error of CUSUM-based classifier, see 
Corollary 4.1, and the second term depends on the complexity of the neural network class measured 
in its VC dimension. Theorem 4.2 suggests that for training sample size N ≫ n2 log n, a well-trained 
single hidden layer neural network with 2n − 2 hidden nodes would have comparable performance 
to that of the CUSUM-based classifier. However, as we will see in Section 5, in practice, a much 
smaller training sample size N is needed for the neural network to be competitive in the change- 
point detection task. This is because the 2n − 2 hidden layer nodes in the neural network represen-
tation of hCUSUM

λ encode the components of the CUSUM transformation ( ± v⊤
t x : t ∈ [n − 1]), 

which are highly correlated.
By suitably pruning the hidden layer nodes, we can show that a single hidden layer neural net-

work with O( log n) hidden nodes is able to represent a modified version of the CUSUM-based 
classifier with essentially the same mis-classification error. More precisely, let Q := ⌊log2 (n/2)⌋
and write T0 := {2q : 0 ≤ q ≤ Q} ∪ {n − 2q : 0 ≤ q ≤ Q}. We can then define

(a) (b)

(c) (d)

Figure 2. Plot of the test set mis-classification error rate, computed on a test set of size Ntest = 30,000, against 
training sample size N for detecting the existence of a change point on data series of length n = 100. We compare 
the performance of the CUSUM test and neural networks from four function classes: H1,m(1) , H1,m(2) , H5,m(1)15

, and 
H10,m(1)110

, where m(1) = 4⌊log2 (n)⌋ and m(2) = 2n − 2, respectively, under scenarios S1, S1 ′, S2, and S3 described in 
Section 5. (a) Scenario S1 with ρt = 0. (b) Scenario S1 ′with ρt = 0.7. (c) Scenario S2 with ρt ∼ Unif([0, 1]). (d) Scenario 
S3 with Cauchy noise.
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hCUSUM∗
λ∗ (X) = 1l{max

t∈T0

|v⊤
t X| > λ∗}.

By the same argument as in Lemma 3.1, we can show that hCUSUM∗
λ∗ ∈ H1,4⌊log2 (n)⌋ for any λ∗ > 0. 

The following theorem shows that high classification accuracy can be achieved under a weaker 
training sample size condition compared to Theorem 4.2.

Theorem 4.3 Fix B > 0 and let the training data D be generated as in Theorem 4.2. Let 
hERM := arg minh∈HL,m

LN(h) be the empirical risk minimizer for a neural 

network with L ≥ 1 layers and m = (m1, . . . , mL)⊤ hidden layer widths. 
If m1 ≥ 4⌊log2 (n)⌋ and mrmr+1 = O(n log n) for all r ∈ [L − 1], then there 
exists a universal constant C > 0 such that for any δ ∈ (0, 1), equation (4) 
holds with probability 1 − δ.

P(hERM(X) ≠ Y ∣ D) ≤ 2⌊log2 (n)⌋e−nB2/24

+ C

�������������������������������������

L2n log2 (Ln) log (N) + log (1/δ)
N



.

(4) 

Theorem 4.3 generalises the single hidden layer neural network representation in Theorem 4.2
to multiple hidden layers. In practice, multiple hidden layers help to keep the MER low even when 
N is small, see Section 5. Theorems 4.2 and 4.3 are examples of how to derive generalization errors 
of a neural network-based classifier in the change-point detection task. The same workflow can be 
employed in other types of changes, provided that suitable representation results of likelihood- 
based tests in terms of neural networks (e.g. Lemma 3.2) can be obtained. In a general result of 
this type, the generalization error of the neural network will again be bounded by a sum of the er-
ror of the likelihood-based classifier together with a term originating from the VC-dimension 
bound of the complexity of the neural network architecture.

We further remark that for simplicity of discussion, we have focused our attention on data mod-
els where the noise vector ξ = X − EX has independent and identically distributed normal compo-
nents. However, since CUSUM-based tests are available for temporally correlated or sub-Weibull 
data, with suitably adjusted test threshold values, the above theoretical results readily generalise to 
such settings. See Theorems S4 and S6 in the online supplementary material for more details.

5 Numerical study
We now investigate empirically our approach of learning a change-point detection method by train-
ing a neural network. Motivated by the results from the previous section, we will fit a neural net-
work with a single layer and consider how varying the number of hidden layers and the amount 
of training data affects performance. We will compare to a test based on the CUSUM statistic, 
both for scenarios where the noise is independent and Gaussian, and for scenarios where there is 
auto-correlation or heavy-tailed noise. The CUSUM test can be sensitive to the choice of threshold, 
particularly when we do not have independent Gaussian noise, so we tune its threshold based on 
training data.

When training the neural network, we first standardise the data onto [0, 1], i.e. 
x̃i = ((xij − xmin

i )/(xmax
i − xmin

i )) j∈[n], where xmax
i := max jxij, xmin

i := minj xij. This makes the neural 
network procedure invariant to either adding a constant to the data or scaling the data by a con-
stant, which are natural properties to require. We train the neural network by minimizing the 
cross-entropy loss on the training data. We run training for 200 epochs with a batch size of 32 
and a learning rate of 0.001 using the Adam optimizer (Kingma & Ba, 2015). These hyperpara-
meters are chosen based on a training dataset with cross-validation, more details can be found 
in Section 2 of the online supplementary material.

We generate our data as follows. Given a sequence of length n, we draw τ ∼ Unif{2, . . . , n − 2}, 

set μL = 0 and draw μR|τ ∼ Unif([ − 1.5b, − 0.5b] ∪ [0.5b, 1.5b]), where b :=
����������
8n log (20n)

τ(n−τ)



is chosen 
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in line with Lemma 4.1 to ensure a good range of SNRs. We then generate 
x1 = (μL1{t≤τ} + μR1{t>τ} + εt)t∈[n], with the noise (εt)t∈[n] following an AR(1) model with possibly 
time-varying auto-correlation εt|ρt = ξ1 for t = 1 and ρtεt−1 + ξt for t ≥ 2, where (ξt)t∈[n] are inde-
pendent, possibly heavy-tailed noise. The auto-correlations ρt and innovations ξt are from one of 
the four scenarios: 

S1: n = 100, N ∈ {100, 200, . . . , 700}, ρt = 0, and ξt ∼ N(0, 1).
S1′: n = 100, N ∈ {100, 200, . . . , 700}, ρt = 0.7, and ξt ∼ N(0, 1).
S2: n = 100, N ∈ {100, 200, . . . , 1,000}, ρt ∼ Unif([0, 1]), and ξt ∼ N(0, 2).
S3: n = 100, N ∈ {100, 200, . . . , 1,000}, ρt = 0, and ξt ∼ Cauchy(0, 0.3).

The above procedure is then repeated N/2 times to generate independent sequences x1, . . . , xN/2 

with a single change, and the associated labels are (y1, . . . , yN/2)⊤ = 1N/2. We then repeat 
the process another N/2 times with μR = μL to generate sequences without changes 
xN/2+1, . . . , xN with (yN/2+1, . . . , yN)⊤ = 0N/2. The data with and without change (xi, yi)i∈[N] 
are combined and randomly shuffled to form the training data. The test data are generated in a 
similar way, with a sample size Ntest = 30,000 and the slight modification that μR|τ ∼ 
Unif([ − 1.75b, − 0.25b] ∪ [0.25b, 1.75b]) when a change occurs. We note that the test data is 
drawn from the same distribution as the training set, though potentially having changes with 
SNRs outside the range covered by the training set. We have also conducted robustness studies 
to investigate the effect of training the neural networks on scenario S1 and test on S1′, S2, or 
S3. Qualitatively similar results to Figure 2 have been obtained in this mis-specified setting (see 
Figure S2 of the online supplementary material). We compare the performance of the 
CUSUM-based classifier with the threshold cross-validated on the training data with neural net-
works from four function classes: H1,m(1) , H1,m(2) , H5,m(1)15 

and H10,m(1)110
, where m(1) = 

4⌊log2 (n)⌋ and m(2) = 2n − 2, respectively (cf. Theorem 4.3 and Lemma 3.1). Figure 2 shows 
the test MER of the four procedures in the four scenarios S1, S1′, S2, and S3. We observe that 
when data are generated with independent Gaussian noise (Figure 2a), the trained neural networks 
with m(1) and m(2) single hidden layer nodes attain very similar test MER compared to the 
CUSUM-based classifier. This is in line with our Theorem 4.3. More interestingly, when noise 
has either auto-correlation (Figure 2b and c) or heavy-tailed distribution (Figure 2d), trained neur-
al networks with (L, m): (1, m(1)), (1, m(2)), (5, m(1)15), and (10, m(1)110) outperform the 
CUSUM-based classifier, even after we have optimised the threshold choice of the latter. In add-
ition, as shown in Figure S1 in the online supplementary material, when the first two layers of the 
network are set to carry out truncation, which can be seen as a composition of two ReLU opera-
tions, the resulting neural network outperforms the Wilcoxon statistics-based classifier (Dehling 
et al., 2015), which is a standard benchmark for change-point detection in the presence of heavy- 
tailed noise. Furthermore, from Figure 2, we see that increasing L can significantly reduce the aver-
age MER when N ≤ 200. Theoretically, as the number of layers L increases, the neural network is 
better able to approximate the optimal decision boundary, but it becomes increasingly difficult to 
train the weights due to issues such as vanishing gradients (He et al., 2016). A combination of these 
considerations leads us to develop deep neural network architecture with residual connections for 
detecting multiple changes and multiple change types in Section 6.  

6 Detecting multiple changes and multiple change types—case study
From the previous section, we see that single and multiple hidden layer neural networks can re-
present CUSUM or generalised CUSUM tests and may perform better than likelihood-based 
test statistics when the model is mis-specified. This prompted us to seek a general network archi-
tecture that can detect, and even classify, multiple types of change. Motivated by the similarities 
between signal processing and image recognition, we employed a deep convolutional neural net-
work (CNN) (Yamashita et al., 2018) to learn the various features of multiple change types. 
However, stacking more CNN layers cannot guarantee a better network because of vanishing gra-
dients in training (He et al., 2016). Therefore, we adopted the residual block structure (He et al., 
2016) for our neural network architecture. After experimenting with various architectures with 
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different numbers of residual blocks and fully connected layers on synthetic data, we arrived at a 
network architecture with 21 residual blocks followed by a number of fully connected layers. 
Figure S5 of the online supplementary material shows an overview of the architecture of the final 
general-purpose deep neural network for change-point detection. The precise architecture and 
training methodology of this network NN can be found in Section 3 of the online 
supplementary material. Neural architecture search approaches (see Paaß & Giesselbach, 2023, 
Section 2.4.3) offer principled ways of selecting neural architectures. Some of these approaches 
could be made applicable in our setting.

We demonstrate the power of our general purpose change-point detection network in a 
numerical study. We train the network on N = 10,000 instances of data sequences generated 
from a mixture of no change point in mean or variance, change in mean only, change in variance 
only, no-change in a non-zero slope, and change in slope only, and compare its classification per-
formance on a test set of size 2,500 against that of oracle likelihood-based classifiers (where we pre- 
specify whether we are testing for change in mean, variance or slope) and adaptive likelihood-based 
classifiers (where we combine likelihood-based tests using the Bayesian information criterion). 
Details of the data-generating mechanism and classifiers can be found in Section 2 of the online 
supplementary material. The classification accuracy of the three approaches in weak and strong 
SNR settings is reported in Table 1. We see that the neural network-based approach achieves simi-
lar classification accuracy as adaptive likelihood-based method for weak SNR and higher classifi-
cation accuracy than the adaptive likelihood-based method for strong SNR. We would not expect 
the neural network to outperform the oracle likelihood-based classifiers, as it has no knowledge of 
the exact change type of each time series.

We now consider an application to detecting different types of change. The HASC (Human 
Activity Sensing Consortium) project data contain motion sensor measurements during a sequence 
of human activities, including ‘stay’, ‘walk’, ‘jog’, ‘skip’, ‘stair up’, and ‘stair down’. Complex 
changes in sensor signals occur during transition from one activity to the next (see Figure 3). 
We have 28 labels in HASC data, see Figure S6 of the online supplementary material. To agree 
with the dimension of the output, we drop two dense layers ‘Dense(10)’ and ‘Dense(20)’ in 
Figure S5 of the online supplementary material. The resulting network can be effectively applied 
for change-point detection in sensory signals of human activities and can achieve high accuracy in 
change-point classification tasks (Figure S8 of the online supplementary material).

Finally, we remark that our neural network-based change-point detector can be utilised to de-
tect multiple change points. Algorithm 1 outlines a general scheme for turning a change-point clas-
sifier into a location estimator, where we employ an idea similar to that of MOSUM (Eichinger & 
Kirch, 2018) and repeatedly apply a classifier ψ to data from a sliding window of size n. Here, we 
require ψ applied to each data segment X∗[i,i+n) to output both the class label Li = 0 or 1 if no change 
or a change is predicted and the corresponding probability pi of having a change. In our particular 

example, for each data segment X∗[i,i+n) of length n = 700, we define ψ(X∗[i,i+n)) = 0 if NN(X∗[i,i+n)) 

Table 1. Test classification accuracy of oracle likelihood-ratio-based method (LRoracle), adaptive likelihood-ratio 
method (LRadapt), and our residual neural network (NN) classifier for set-ups with weak and strong signal-to-noise 
ratios (SNRs)

Weak SNR Strong SNR

LRoracle LRadapt NN LRoracle LRadapt NN

Class 1 0.9787 0.9457 0.8062 0.9787 0.9341 0.9651

Class 2 0.8443 0.8164 0.8882 1.0000 0.7784 0.9860

Class 3 0.8350 0.8291 0.8585 0.9902 0.9902 0.9705

Class 4 0.9960 0.9453 0.8826 0.9980 0.9372 0.9312

Class 5 0.8729 0.8604 0.8353 0.9958 0.9917 0.9147

Accuracy 0.9056 0.8796 0.8660 0.9924 0.9260 0.9672

Note. Data are generated as a mixture of no change point in mean or variance (Class 1), change in mean only (Class 2), 
change in variance only (Class 3), no-change in a non-zero slope (Class 4), and change in slope only (Class 5). We report 
the true positive rate of each class and the accuracy in the last row.
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predicts a class label in {0, 4, 8, 12, 16, 22} (see Figure S6 in the online supplementary material) 
and 1 otherwise. The thresholding parameter γ ∈ Z+ is chosen to be 1/2. Figure 4 illustrates the 
result of multiple change-point detection in HASC data which provides evidence that the trained 
neural network can detect both the multiple change types and multiple change points.

7 Discussion
Reliable testing for change points and estimating their locations, especially in the presence of mul-
tiple change points, other heterogeneities or untidy data, is typically a difficult problem for the ap-
plied statistician: they need to understand what type of change is sought, be able to characterise it 
mathematically, find a satisfactory stochastic model for the data, formulate the appropriate statis-
tic, and fine-tune its parameters. This makes for a long workflow, with scope for errors at its every 
stage.

In this paper, we showed how a carefully constructed statistical learning framework could auto-
matically take over some of those tasks and perform many of them ‘in one go’ when provided with 
examples of labelled data. This turned the change-point detection problem into a supervised learn-
ing problem, and meant that the task of learning the appropriate test statistic and fine-tuning its 
parameters was left to the ‘machine’ rather than the human user.

The crucial question was that of choosing an appropriate statistical learning framework. The key 
factor behind our choice of neural networks was the discovery that the traditionally used 
likelihood-ratio-based change-point detection statistics could be viewed as simple neural networks, 
which (together with bounds on generalization errors beyond the training set) enabled us to formu-
late and prove the corresponding learning theory. However, there are a plethora of other excellent 
predictive frameworks, such as XGBoost, LightGBM or Random Forests (Breiman, 2001; Chen & 
Guestrin, 2016; Ke et al., 2017) and it would be of interest to establish whether and why they could 
or could not provide a viable alternative to neural nets here. Furthermore, if we view the neural net-
work as emulating the likelihood-ratio test statistic, in that it will create test statistics for each pos-
sible location of a change and then amalgamate these into a single classifier, then we know that test 
statistics for nearby changes will often be similar. This suggests that imposing some smoothness on 
the weights of the neural network may be beneficial.

Figure 3. The sequence of accelerometer data in x, y, and z axes. From left to right, there are four activities: ‘stair 
down’, ‘stay’, ‘stair up’, and ‘walk’, their change points are 990, 1,691, 2,733, respectively marked by black solid 
lines. The grey rectangles represent the group of ‘no-change’ with labels: ‘stair down’, ‘stair up’, and ‘walk’. The red 
rectangles represent the group of ‘one change’ with labels: ‘stair down →stay’, ‘stay →stair up’, and ‘stair 
up →walk’.

Algorithm 1 Algorithm for change-point localization

Input: new data x∗1, . . . , x∗n∗ ∈ Rd, a trained classifier ψ : Rd×n → {0, 1}, γ > 0.

1 Form X∗[i,i+n) := (x∗i , . . . , xi+n−1) and compute Li ← ψ(X∗[i,i+n)) for all i = 1, . . . , n∗ − n + 1;

2 Compute L̅i ← n−1 i
j=i−n+1 Lj for i = n, . . . , n∗ − n + 1;

3 Let {[s1, e1], . . . , [sν̂, eν̂]} be the set of all maximal segments such that L̅i ≥ γ for all i ∈ [sr, er], r ∈ [ν̂];

4 Compute τ̂r ← arg maxi∈[sr ,er]L̅i for all r ∈ [ν̂];

Output: Estimated change-points τ̂1, . . . , τ̂ν̂

282                                                                                                                                                         Li et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/86/2/273/7517020 by guest on 30 Septem
ber 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkae004#supplementary-data


A further challenge is to develop methods that can adapt easily to input data of different sizes, with-
out having to train a different neural network for each input size. For changes in the structure of the 
mean of the data, it may be possible to use ideas from functional data analysis so that we pre-process 
the data, with some form of smoothing or imputation, to produce input data of the correct length.

If historical labelled examples of change points, perhaps provided by subject-matter experts 
(who are not necessarily statisticians) are not available, one question of interest is whether simu-
lation can be used to obtain such labelled examples artificially, based on (say) a single dataset of 
interest. Such simulated examples would need to come in two flavours: one batch ‘likely contain-
ing no change points’ and the other containing some artificially induced ones. How to simulate 
reliably in this way is an important problem, which this paper does not solve. Indeed, we can en-
visage situations in which simulating in this way may be easier than solving the original unsuper-
vised change-point problem involving the single dataset at hand, with the bulk of the difficulty left 
to the ‘machine’ at the learning stage when provided with the simulated data.

For situations where there is no historical data, but there are statistical models, one can obtain 
training data by simulation from the model. In this case, training a neural network to detect a 
change has similarities with likelihood-free inference methods in that it replaces analytic calcula-
tions associated with a model by the ability to simulate from the model. It is of interest whether 
ideas from that area of statistics can be used here.

The main focus of our work was on testing for a single offline change point, and we treated lo-
cation estimation and extensions to multiple-change scenarios only superficially, via the heuristics 
of testing-based estimation in Section 6. Similar extensions can be made to the online setting once 
the neural network is trained, by retaining the final n observations in an online stream in memory 
and applying our change-point classifier sequentially. One question of interest is whether and how 
these heuristics can be made more rigorous: equipped with an offline classifier only, how can we 
translate the theoretical guarantee of this offline classifier to that of the corresponding location es-
timator or online detection procedure? In addition to this approach, how else can a neural net-
work, however complex, be trained to estimate locations or detect change points sequentially? 
In our view, these questions merit further work.
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