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We would like to thank the proposer, seconder and all discussants for their time in reading
our paper and their thought-provoking comments. We are glad to find a broad consensus that
neural-network-based approach offers a flexible framework for automatic change-point analysis.
There are a number of common themes to the comments, and we have therefore structured our
response around the topics of the theory, training, the importance of standardisation and possible
extensions, before addressing some of the remaining individual comments.

Theory Both Wilkinson and Zhang compare the theoretical bound on the generalisation error in
Theorem 4.2 with our empirical results in Figure 2 of main text, Figures S2 and S3 of supplement.
Our experience has been that the empirical generalisation error has been substantially lower than
the theoretical bounds suggest — with good performance of our fitted neural network with training
sample sizes that are orders of magnitude smaller than one may expect given the number of
parameters within the neural network. Related to this is that how the bound on the generalisation
error depends on e.g. the number of layers, is not particularly informative about how these factors
affect the error in practice. We agree with both Wilkinson and Zhang that there is a need for a
new theoretical framework for bounding the generalisation error of neural networks that is more
meaningful in practice.

We thank Zhang for pointing out how our theoretical analysis can be extended to more general
data generating mechanisms, including heavier-than-Gaussian noise distributions and data with
weak temporal correlation (a concern of Hong et al. (2024)). Indeed, as Zhang comments, the
same procedure still works in such settings and the current proof will go through, with minor
modifications to the choice of λ in Corollary 4.1. As λ is adaptively chosen by the neural network
(which is one of the main attractions of our procedure), the results in Theorems 4.2 and 4.3 will
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be essentially unchanged. In a similar vein, Schmidt-Hieber mentions that our theory could be
modified to prove local change-point detection error rates using convolutional neural networks
(CNN). Indeed, by combining existing results on MOSUM (Eichinger and Kirch, 2018) together
with VC dimension results of CNN, we could arrive at a similar result to Theorems 4.2 and 4.3
in the paper.

Gavioli-Akilagun points out that the current architecture cannot directly exactly represent
the likelihood-ratio test statistic for detection of piecewise affine changes. We agree with this
observation. However, by including squared observations as inputs, or if we include squaring in
the set of non-linearities permitted by the neural network, we can directly express the likelihood
ratio test as a function in the neural network class (VC-dimension results concerning neural
networks with piecewise polynomial activation functions are given in Theorem 7 of Bartlett et al.
(2019)). Moreover, by including multiple layers within our architecture, the neural network can
accurately approximate the square function. This is related to the nice results of Gavioli-Akilagun
that show test statistics based on linear functions, which can be represented simply by a neural
network, can have statistical performance comparably to those based on the likelihood-ratio test.

Regarding Zhang’s observation that the first term in Theorem 4.3 does not decrease as training
sample size N increases, our intuition is that the first term represents the Bayes risk of the
classification task on the test set, which is achieved by the CUSUM-based classifier. Therefore, it
will not be affected by increasing training sample size and only depends on the test sample.

Neural network architecture Both Wilkinson and Nemeth raise the question of how to choose
a suitable neural network architecture for different settings. This is a well-studied problem in
machine learning. A few possible Neural Architecture Search approaches are mentioned in Paaß
and Giesselbach (2023, Section 2.4.3) (also discussed in Section 6 of the main text). Nemeth
also asks the question of whether it is easier to choose the neural network architecture than to
choose stochastic models to represent the data. Given these Neural Architecture Search methods
mentioned above, we believe that the former is at least a more structured problem that can be
solved algorithmically.

Schmidt-Hieber discusses the effect of the depth of the network on its ability to detect various
structures in the signal. Indeed, we agree that in general the less we know about the data
generating mechanism, the more layers we need in the architecture.

Training Cribben and Anastasiou raise a number of important practical considerations with
training. First, as our approach requires labelled data, there is the challenge of obtaining such
data. We agree that for manually labelled data, the labelling of changes is subjective, and this
means that our method will only aim to replicate the manual classification. If we use simulation,
then we can avoid this, but at the expense of needing to model what changes would look like.
They also point out that often changes are rare — so training data may be imbalanced, and
we would also want to account for this imbalance when detecting new changes. If we believe
the frequency of changes will be different in the training than in the test data, or if we wish to
account differently for different types of errors (false detection versus missing a true change), this
is possible by including different weights for each error when training.

Both Bodenham and Adams, and Hong et al., ask how our approach could be applied to a
single long time-series, for example from finance. First, our method requires labelled training
data, so we would require part of the time-series to have labelled changes, or known to have no
changes. In this case we can divide such historical data into time-series of a fixed length, leading
to a set of labelled training data. One can then fit a neural network classifier to this data, and
use the fitted neural network to classify windows of new data using the same moving window idea
as in Section 6.
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When not enough training data is available, we proposed to simulate artificial data to train our
neural network. Wilkinson points out that this has a close link to the simulation-based inference.
We agree that it is worth investigating the links with this literature further.

Standardisation We agree with Chen and Chen that the simple neural network classifier is not
automatically invariant to the shifting and scaling because it may not have learned an exactly
invariant statistic.

Differences in the results for standardised versus non-standardised data show that the algorithm
(not unexpectedly) learns to perform classification for the problem at hand, whether or not it
aligns with the analyst’s perceived best way of distinguishing the two classes. More specifically,
the algorithm’s task is to solve a binary classification problem, distinguishing between two groups
of sequences. While the analyst may suspect that it is the presence of the change-point that is the
main feature separating the two classes, the learning algorithm may take a different view given
the training data. For example, in the non-standardised case, if all the input data starts with
µL = 0, what the analyst regards as a change-point problem the algorithm may construe as a
testing problem of departure from a zero mean.

Furthermore, as pointed out by Wilkinson, the min-max scaling used in our algorithm may
not be appropriate for very heavy-tailed data. In such contexts, scaling by empirical quantiles
other than 0 and 1 would be more appropriate.

In many applications, one would also like the test to be invariant to the reversal of the time
direction. Hence, Chen and Chen’s proposal of adding reversed sequence Xn, . . . , X1 into the
training data, which has the additional benefit of enlarging the sample size, makes sense.

Extensions As Bodenham and Adams point out, often one is interested in localising changes,
rather than just detecting them. As a first work in the area of using neural networks to auto-
matically construct change-point detectors, we deliberately focused on the problem of detection
rather than localisation. However frameworks similar to that of MOSUM (Eichinger and Kirch,
2018), where we apply a detector to different windows of data, can use a change-point detector
to also estimate the location of any changes. We used this idea, i.e. Algorithm 1, in the analysis
of the HASC data in Section 6. However, we believe that there may be more attractive ways of
extending our idea to the problem of change-point localisation.

A number of discussants (Anastasiou and Cribben, Schoenberg and Wong, Bodenham and
Adams) ask whether our method can be applied in an online setting. This is possible provided
that we have a pre-trained neural network that can classify data of a given window length, say h.
When we receive a new observation, we can apply the neural network classifier to the most recent
h time-points. Computationally this is possible in an online setting, as once trained, the cost of
running the classifier is fixed. There are challenges in terms of how to tune the classifier so that
the resulting online change-point detector has an appropriate average run length. Also, how to
extend this idea so that we also update the classifier on-line as we get new data, is an interesting
open question.

Schoenberg and Wong, Anastasiou and Cribben, Mateu, van Lieshout and Lu ask whether
our ideas could be extended to multivariate data, and in particular spatial data or point process
data. We are interested to hear about the recent developments in this area and look forward to
seeing future works in this direction. One challenge of dealing with point process data is that the
number of points is random and cannot be easily interpreted as input of a neural network. As a
first order approximation, we could bin the data into a (multivariate) time-series of counts and a
similar method to the one proposed in our paper could then be applied.
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Other comments We are interested to read about other research at the interface between neural
networks and change-point and related areas in statistics. This includes the using change-point
detection to improve the fitting of deep neural network models to time-series data (Jungbluth
and Lederer, 2023) and the possibility of using ideas from our paper to improve existing change-
point detection methods as suggested by Ombao. Schmidt-Hieber also points out the possibil-
ity of using a convolutional neural network-based approach for detecting local change-points or
two-dimensional edge detection. Finally, we agree with MacKenzie that one disadvantage with
automated procedures like the one in our paper is that the final test statistic for a change is hard
to interpret. We welcome work on improving interpretability of AI, and believe ideas in this area
will be important as AI methods are increasingly using within statistics.
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